These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28570946)

  • 1. Microfabricated blood vessels undergo neoangiogenesis.
    DiVito KA; Daniele MA; Roberts SA; Ligler FS; Adams AA
    Biomaterials; 2017 Sep; 138():142-152. PubMed ID: 28570946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels.
    Bichsel CA; Hall SR; Schmid RA; Guenat OT; Geiser T
    Tissue Eng Part A; 2015 Aug; 21(15-16):2166-76. PubMed ID: 25891384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous fibroblast-derived pericyte recruitment in a human tissue-engineered angiogenesis model in vitro.
    Berthod F; Symes J; Tremblay N; Medin JA; Auger FA
    J Cell Physiol; 2012 May; 227(5):2130-7. PubMed ID: 21769871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels.
    Sekine H; Shimizu T; Sakaguchi K; Dobashi I; Wada M; Yamato M; Kobayashi E; Umezu M; Okano T
    Nat Commun; 2013; 4():1399. PubMed ID: 23360990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
    Golden AP; Tien J
    Lab Chip; 2007 Jun; 7(6):720-5. PubMed ID: 17538713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascularization strategies of engineered tissues and their application in cardiac regeneration.
    Sun X; Altalhi W; Nunes SS
    Adv Drug Deliv Rev; 2016 Jan; 96():183-94. PubMed ID: 26056716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings.
    Frerich B; Zückmantel K; Hemprich A
    Head Face Med; 2006 Aug; 2():26. PubMed ID: 16914036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional neovascularization in tissue engineering with porcine acellular dermal matrix and human umbilical vein endothelial cells.
    Zhang X; Yang J; Li Y; Liu S; Long K; Zhao Q; Zhang Y; Deng Z; Jin Y
    Tissue Eng Part C Methods; 2011 Apr; 17(4):423-33. PubMed ID: 21062229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network.
    Kim J; Chung M; Kim S; Jo DH; Kim JH; Jeon NL
    PLoS One; 2015; 10(7):e0133880. PubMed ID: 26204526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature.
    Zhang B; Lai BFL; Xie R; Davenport Huyer L; Montgomery M; Radisic M
    Nat Protoc; 2018 Aug; 13(8):1793-1813. PubMed ID: 30072724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulating human microcapillaries in a multi-organ-chip platform.
    Hasenberg T; Mühleder S; Dotzler A; Bauer S; Labuda K; Holnthoner W; Redl H; Lauster R; Marx U
    J Biotechnol; 2015 Dec; 216():1-10. PubMed ID: 26435219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering primitive multiscale chimeric vasculature by combining human microvessels with explanted murine vessels.
    Margolis EA; Choi LS; Friend NE; Putnam AJ
    Sci Rep; 2024 Feb; 14(1):4036. PubMed ID: 38369633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
    Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R
    Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.
    Osaki T; Kakegawa T; Kageyama T; Enomoto J; Nittami T; Fukuda J
    PLoS One; 2015; 10(4):e0123735. PubMed ID: 25860890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli.
    Chang WG; Fornoni A; Tietjen G; Mendez JJ; Niklason LE; Saltzman WM; Pober JS
    Tissue Eng Part A; 2015 Nov; 21(21-22):2673-9. PubMed ID: 26414101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells.
    Sieminski AL; Hebbel RP; Gooch KJ
    Tissue Eng; 2005; 11(9-10):1332-45. PubMed ID: 16259589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascularization--the conduit to viable engineered tissues.
    Kaully T; Kaufman-Francis K; Lesman A; Levenberg S
    Tissue Eng Part B Rev; 2009 Jun; 15(2):159-69. PubMed ID: 19309238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.