These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28571308)
1. Bright Single-Photon Source at 1.3 μm Based on InAs Bilayer Quantum Dot in Micropillar. Chen ZS; Ma B; Shang XJ; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2017 Dec; 12(1):378. PubMed ID: 28571308 [TBL] [Abstract][Full Text] [Related]
2. Boost of single-photon emission by perfect coupling of InAs/GaAs quantum dot and micropillar cavity mode. Li S; Chen Y; Shang X; Yu Y; Yang J; Huang J; Su X; Shen J; Sun B; Ni H; Su X; Wang K; Niu Z Nanoscale Res Lett; 2020 Jul; 15(1):145. PubMed ID: 32648067 [TBL] [Abstract][Full Text] [Related]
3. All-Optical Fiber Hanbury Brown &Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot. Muñoz-Matutano G; Barrera D; Fernández-Pousa CR; Chulia-Jordan R; Seravalli L; Trevisi G; Frigeri P; Sales S; Martínez-Pastor J Sci Rep; 2016 Jun; 6():27214. PubMed ID: 27257122 [TBL] [Abstract][Full Text] [Related]
4. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Kolatschek S; Nawrath C; Bauer S; Huang J; Fischer J; Sittig R; Jetter M; Portalupi SL; Michler P Nano Lett; 2021 Sep; 21(18):7740-7745. PubMed ID: 34478316 [TBL] [Abstract][Full Text] [Related]
5. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors. Jakubczyk T; Franke H; Smoleński T; Sciesiek M; Pacuski W; Golnik A; Schmidt-Grund R; Grundmann M; Kruse C; Hommel D; Kossacki P ACS Nano; 2014 Oct; 8(10):9970-8. PubMed ID: 25181393 [TBL] [Abstract][Full Text] [Related]
6. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots. Song HZ; Takemoto K; Miyazawa T; Takatsu M; Iwamoto S; Yamamoto T; Arakawa Y Opt Lett; 2013 Sep; 38(17):3241-4. PubMed ID: 23988924 [TBL] [Abstract][Full Text] [Related]
7. Polarized and Bright Telecom C-Band Single-Photon Source from InP-Based Quantum Dots Coupled to Elliptical Bragg Gratings. Ge Z; Chung T; He YM; Benyoucef M; Huo Y Nano Lett; 2024 Feb; 24(5):1746-1752. PubMed ID: 38286024 [TBL] [Abstract][Full Text] [Related]
8. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Birowosuto MD; Sumikura H; Matsuo S; Taniyama H; van Veldhoven PJ; Nötzel R; Notomi M Sci Rep; 2012; 2():321. PubMed ID: 22432053 [TBL] [Abstract][Full Text] [Related]
9. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Chen ZS; Ma B; Shang XJ; He Y; Zhang LC; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2016 Dec; 11(1):382. PubMed ID: 27576522 [TBL] [Abstract][Full Text] [Related]
10. Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths. Chauvin N; Balet L; Alloing B; Zinoni C; Li L; Fiore A; Grenouillet L; Gilet P; Olivier N; Tchelnokov A; Terrier M; Gérard JM Opt Lett; 2007 Sep; 32(18):2747-9. PubMed ID: 17873956 [TBL] [Abstract][Full Text] [Related]
12. Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system. Unsleber S; Schneider C; Maier S; He YM; Gerhardt S; Lu CY; Pan JW; Kamp M; Höfling S Opt Express; 2015 Dec; 23(26):32977-85. PubMed ID: 26831965 [TBL] [Abstract][Full Text] [Related]
13. Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip. Singh A; Li Q; Liu S; Yu Y; Lu X; Schneider C; Höfling S; Lawall J; Verma V; Mirin R; Nam SW; Liu J; Srinivasan K Optica; 2019; 6(5):. PubMed ID: 38496234 [TBL] [Abstract][Full Text] [Related]
15. Bright Telecom-Wavelength Single Photons Based on a Tapered Nanobeam. Lee CM; Buyukkaya MA; Harper S; Aghaeimeibodi S; Richardson CJK; Waks E Nano Lett; 2021 Jan; 21(1):323-329. PubMed ID: 33338376 [TBL] [Abstract][Full Text] [Related]
16. High Extraction Efficiency Source of Photon Pairs Based on a Quantum Dot Embedded in a Broadband Micropillar Cavity. Ginés L; Moczała-Dusanowska M; Dlaka D; Hošák R; Gonzales-Ureta JR; Lee J; Ježek M; Harbord E; Oulton R; Höfling S; Young AB; Schneider C; Predojević A Phys Rev Lett; 2022 Jul; 129(3):033601. PubMed ID: 35905333 [TBL] [Abstract][Full Text] [Related]
17. A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Liu S; Wei Y; Su R; Su R; Ma B; Chen Z; Ni H; Niu Z; Yu Y; Wei Y; Wang X; Yu S Sci Rep; 2017 Oct; 7(1):13986. PubMed ID: 29070846 [TBL] [Abstract][Full Text] [Related]
18. Microfiber-microcavity system for efficient single photon collection. Lee CM; Lim HJ; Lee M; Schneider C; Maier S; Höfling S; Kamp M; Lee YH Opt Express; 2016 Oct; 24(20):23471-23480. PubMed ID: 27828410 [TBL] [Abstract][Full Text] [Related]
19. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity. Phillips CL; Brash AJ; Godsland M; Martin NJ; Foster A; Tomlinson A; Dost R; Babazadeh N; Sala EM; Wilson L; Heffernan J; Skolnick MS; Fox AM Sci Rep; 2024 Feb; 14(1):4450. PubMed ID: 38396018 [TBL] [Abstract][Full Text] [Related]
20. Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction. Li S; Shang X; Chen Y; Su X; Hao H; Liu H; Zhang Y; Ni H; Niu Z Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]