These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28571330)

  • 21. Why we need to look beyond the glass transition temperature to characterize the dynamics of thin supported polymer films.
    Zhang W; Douglas JF; Starr FW
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5641-5646. PubMed ID: 29760090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films.
    Napolitano S; Capponi S; Vanroy B
    Eur Phys J E Soft Matter; 2013 Jun; 36(6):61. PubMed ID: 23797356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature.
    Torres JM; Stafford CM; Vogt BD
    ACS Nano; 2009 Sep; 3(9):2677-85. PubMed ID: 19702280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene.
    Fukao K; Miyamoto Y
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1743-54. PubMed ID: 11046459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facilitation of interfacial dynamics in entangled polymer films.
    Glor EC; Fakhraai Z
    J Chem Phys; 2014 Nov; 141(19):194505. PubMed ID: 25416896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films.
    Xia W; Hsu DD; Keten S
    Macromol Rapid Commun; 2015 Aug; 36(15):1422-7. PubMed ID: 26033661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Dependence of Non-Gaussian Diffusion of Nanoparticles in Free-Standing Thin Polymer Films.
    Jung J; Kwon T; Oh Y; Lee YR; Sung BJ
    J Phys Chem B; 2019 Oct; 123(43):9250-9259. PubMed ID: 31589036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow dynamics near glass transitions in thin polymer films.
    Fukao K; Miyamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011803. PubMed ID: 11461279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A direct quantitative measure of surface mobility in a glassy polymer.
    Chai Y; Salez T; McGraw JD; Benzaquen M; Dalnoki-Veress K; Raphaël E; Forrest JA
    Science; 2014 Feb; 343(6174):994-9. PubMed ID: 24578574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced diffusion and mobile fronts in a simple lattice model of glass-forming liquids.
    Tito NB; Milner ST; Lipson JE
    Soft Matter; 2015 Oct; 11(39):7792-801. PubMed ID: 26313541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer thin films and surfaces: possible effects of capillary waves.
    Herminghaus S
    Eur Phys J E Soft Matter; 2002 May; 8(2):237-43; discussion 245-9. PubMed ID: 15010973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic dynamics of polymer thin films and surfaces.
    Herminghaus S; Jacobs K; Seemann R
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):101-10. PubMed ID: 15007686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous dynamics of ionic liquids in confined films with varied film thickness.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2014 Oct; 16(38):20731-40. PubMed ID: 25162673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation.
    Phan AD; Koperwas K; Paluch M; Wakabayashi K
    Phys Chem Chem Phys; 2020 Nov; 22(42):24365-24371. PubMed ID: 33084661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement.
    Schweizer KS; Simmons DS
    J Chem Phys; 2019 Dec; 151(24):240901. PubMed ID: 31893888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014902. PubMed ID: 19586119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic phase transitions in freestanding polymer thin films.
    Ivancic RJS; Riggleman RA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25407-25413. PubMed ID: 33008880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.