These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28571348)

  • 1. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms.
    Thomas PS; Carrington T
    J Chem Phys; 2017 May; 146(20):204110. PubMed ID: 28571348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms.
    Thomas PS; Carrington T
    J Phys Chem A; 2015 Dec; 119(52):13074-91. PubMed ID: 26555177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing vibrational energy levels using a canonical polyadic tensor method with a fixed rank and a contraction tree.
    Kallullathil SD; Carrington T
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene.
    Thomas PS; Carrington T; Agarwal J; Schaefer HF
    J Chem Phys; 2018 Aug; 149(6):064108. PubMed ID: 30111157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.
    Leclerc A; Carrington T
    J Chem Phys; 2014 May; 140(17):174111. PubMed ID: 24811629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing vibrational energy levels by solving linear equations using a tensor method with an imposed rank.
    Kallullathil SD; Carrington T
    J Chem Phys; 2021 Dec; 155(23):234105. PubMed ID: 34937358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method.
    Wodraszka R; Carrington T
    J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using an expanding nondirect product harmonic basis with an iterative eigensolver to compute vibrational energy levels with as many as seven atoms.
    Brown J; Carrington T
    J Chem Phys; 2016 Oct; 145(14):144104. PubMed ID: 27782534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact sum-of-products form of the molecular electronic Hamiltonian based on canonical polyadic decomposition.
    Sasmal S; Schröder M; Vendrell O
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38345112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface.
    Wodraszka R; Carrington T
    J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using nested tensor train contracted basis functions with group theoretical techniques to compute (ro)-vibrational spectra of molecules with non-Abelian groups.
    Rey M; Carrington T
    J Chem Phys; 2024 Jul; 161(4):. PubMed ID: 39037133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural canonical transformations for vibrational spectra of molecules.
    Zhang Q; Wang RS; Wang L
    J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38979703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation.
    Manzhos S; Carrington T
    J Chem Phys; 2016 Dec; 145(22):224110. PubMed ID: 27984898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating vibrational spectra of molecules using tensor train decomposition.
    Rakhuba M; Oseledets I
    J Chem Phys; 2016 Sep; 145(12):124101. PubMed ID: 27782616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms.
    Wang XG; Carrington T
    J Chem Phys; 2009 Mar; 130(9):094101. PubMed ID: 19275390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations.
    Madsen NK; Godtliebsen IH; Losilla SA; Christiansen O
    J Chem Phys; 2018 Jan; 148(2):024103. PubMed ID: 29331116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing vibrational spectra using a new collocation method with a pruned basis and more points than basis functions: Avoiding quadrature.
    Simmons J; Carrington T
    J Chem Phys; 2023 Apr; 158(14):144115. PubMed ID: 37061500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer.
    Wang XG; Carrington T
    J Chem Phys; 2018 Feb; 148(7):074108. PubMed ID: 29471639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.