These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28571428)

  • 1. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement.
    Li C; Zhou T; Zhai Y; Xiang J; Luan T; Huang Q; Yang S; Xiong W; Chen X
    Rev Sci Instrum; 2017 May; 88(5):053104. PubMed ID: 28571428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a Bose-condensed gas of
    Hu J; Urvoy A; Vendeiro Z; Crépel V; Chen W; Vuletić V
    Science; 2017 Nov; 358(6366):1078-1080. PubMed ID: 29170237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid evaporative cooling of
    Wang Y; Li Y; Wu J; Liu W; Hu J; Ma J; Xiao L; Jia S
    Opt Express; 2021 Apr; 29(9):13960-13967. PubMed ID: 33985122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Laser Cooling to Bose-Einstein Condensation in a Dipole Trap.
    Urvoy A; Vendeiro Z; Ramette J; Adiyatullin A; Vuletić V
    Phys Rev Lett; 2019 May; 122(20):203202. PubMed ID: 31172763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.
    Li J; de Melo LF; Luo L
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporative cooling of the dipolar hydroxyl radical.
    Stuhl BK; Hummon MT; Yeo M; Quéméner G; Bohn JL; Ye J
    Nature; 2012 Dec; 492(7429):396-400. PubMed ID: 23257881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cylindrically symmetric magnetic trap for compact Bose-Einstein condensate atom interferometer gyroscopes.
    Horne RA; Sackett CA
    Rev Sci Instrum; 2017 Jan; 88(1):013102. PubMed ID: 28147663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bose-Einstein condensation of strontium.
    Stellmer S; Tey MK; Huang B; Grimm R; Schreck F
    Phys Rev Lett; 2009 Nov; 103(20):200401. PubMed ID: 20365964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large atom number Bose-Einstein condensate of sodium.
    van der Stam KM; van Ooijen ED; Meppelink R; Vogels JM; van der Straten P
    Rev Sci Instrum; 2007 Jan; 78(1):013102. PubMed ID: 17503902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of two-stage crossed beam cooling and the comparison with Delta-kick cooling in experiment.
    Luan T; Li Y; Zhang X; Chen X
    Rev Sci Instrum; 2018 Dec; 89(12):123110. PubMed ID: 30599612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps.
    Pohl T; Sadeghpour HR; Nagata Y; Yamazaki Y
    Phys Rev Lett; 2006 Nov; 97(21):213001. PubMed ID: 17155740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bose-Einstein Condensation by Polarization Gradient Laser Cooling.
    Xu W; Šumarac T; Qiu EH; Peters ML; Cantú SH; Li Z; Menssen A; Lukin MD; Colombo S; Vuletić V
    Phys Rev Lett; 2024 Jun; 132(23):233401. PubMed ID: 38905656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic cooling in an optically trapped mixture of alkali and spin-singlet atoms.
    Ivanov VV; Khramov A; Hansen AH; Dowd WH; Münchow F; Jamison AO; Gupta S
    Phys Rev Lett; 2011 Apr; 106(15):153201. PubMed ID: 21568554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom chip apparatus for experiments with ultracold rubidium and potassium gases.
    Ivory MK; Ziltz AR; Fancher CT; Pyle AJ; Sensharma A; Chase B; Field JP; Garcia A; Jervis D; Aubin S
    Rev Sci Instrum; 2014 Apr; 85(4):043102. PubMed ID: 24784588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.
    Luan T; Yao H; Wang L; Li C; Yang S; Chen X; Ma Z
    Opt Express; 2015 May; 23(9):11378-87. PubMed ID: 25969232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic trapping of rare-earth atoms at millikelvin temperatures.
    Hancox CI; Doret SC; Hummon MT; Luo L; Doyle JM
    Nature; 2004 Sep; 431(7006):281-4. PubMed ID: 15372025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Bose-Einstein condensation of excitons in potential traps.
    Butov LV; Lai CW; Ivanov AL; Gossard AC; Chemla DS
    Nature; 2002 May; 417(6884):47-52. PubMed ID: 11986661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser cooling of antihydrogen atoms.
    Baker CJ; Bertsche W; Capra A; Carruth C; Cesar CL; Charlton M; Christensen A; Collister R; Mathad AC; Eriksson S; Evans A; Evetts N; Fajans J; Friesen T; Fujiwara MC; Gill DR; Grandemange P; Granum P; Hangst JS; Hardy WN; Hayden ME; Hodgkinson D; Hunter E; Isaac CA; Johnson MA; Jones JM; Jones SA; Jonsell S; Khramov A; Knapp P; Kurchaninov L; Madsen N; Maxwell D; McKenna JTK; Menary S; Michan JM; Momose T; Mullan PS; Munich JJ; Olchanski K; Olin A; Peszka J; Powell A; Pusa P; Rasmussen CØ; Robicheaux F; Sacramento RL; Sameed M; Sarid E; Silveira DM; Starko DM; So C; Stutter G; Tharp TD; Thibeault A; Thompson RI; van der Werf DP; Wurtele JS
    Nature; 2021 Apr; 592(7852):35-42. PubMed ID: 33790445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooling Bose-Einstein condensates below 500 picokelvin.
    Leanhardt AE; Pasquini TA; Saba M; Schirotzek A; Shin Y; Kielpinski D; Pritchard DE; Ketterle W
    Science; 2003 Sep; 301(5639):1513-5. PubMed ID: 12970559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface.
    Händel S; Marchant AL; Wiles TP; Hopkins SA; Cornish SL
    Rev Sci Instrum; 2012 Jan; 83(1):013105. PubMed ID: 22299927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.