These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28571547)
21. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Ruangsomboon S Bioresour Technol; 2015 Sep; 191():377-84. PubMed ID: 25677535 [TBL] [Abstract][Full Text] [Related]
22. Fatty acids profiles and estimation of the biodiesel quality parameters from Rhodotorula spp. from Antarctica. Viñarta SC; Angelicola MV; Van Nieuwenhove C; Aybar MJ; de Figueroa LIC Biotechnol Lett; 2020 May; 42(5):757-772. PubMed ID: 31997042 [TBL] [Abstract][Full Text] [Related]
23. Biodiesel production from Vietnam heterotrophic marine microalga Schizochytrium mangrovei PQ6. Hong DD; Mai DT; Thom le T; Ha NC; Lam BD; Tam LT; Anh HT; Thu NT J Biosci Bioeng; 2013 Aug; 116(2):180-5. PubMed ID: 23628218 [TBL] [Abstract][Full Text] [Related]
24. Amaranth seeds (Amaranthus palmeri L.) as novel feedstock for biodiesel production by oleaginous yeast. Deeba F; Patel A; Arora N; Pruthi V; Pruthi PA; Negi YS Environ Sci Pollut Res Int; 2018 Jan; 25(1):353-362. PubMed ID: 29039037 [TBL] [Abstract][Full Text] [Related]
25. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production. Rivaldi JD; Carvalho AKF; da Conceição LRV; de Castro HF Prep Biochem Biotechnol; 2017 Nov; 47(10):970-976. PubMed ID: 28857682 [TBL] [Abstract][Full Text] [Related]
26. Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Shekh AY; Shrivastava P; Krishnamurthi K; Mudliar SN; Devi SS; Kanade GS; Lokhande SK; Chakrabarti T Bioresour Technol; 2013 Jun; 138():382-6. PubMed ID: 23642439 [TBL] [Abstract][Full Text] [Related]
27. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011 [TBL] [Abstract][Full Text] [Related]
28. Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. Khot M; Gupta R; Barve K; Zinjarde S; Govindwar S; Kumar AR J Microbiol Biotechnol; 2015 Apr; 25(4):459-63. PubMed ID: 25341469 [TBL] [Abstract][Full Text] [Related]
29. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Carota E; Crognale S; D'Annibale A; Gallo AM; Stazi SR; Petruccioli M Sci Total Environ; 2017 Apr; 584-585():554-560. PubMed ID: 28169024 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Ma Y; Wang Z; Yu C; Yin Y; Zhou G Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933 [TBL] [Abstract][Full Text] [Related]
31. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach. Sabu S; Singh ISB; Joseph V Environ Sci Pollut Res Int; 2017 Dec; 24(34):26763-26777. PubMed ID: 28963632 [TBL] [Abstract][Full Text] [Related]
32. Fatty Acid Composition and Thermotropic Behavior of Glycolipids and Other Membrane Lipids of Ulva lactuca (Chlorophyta) Inhabiting Different Climatic Zones. Kostetsky E; Chopenko N; Barkina M; Velansky P; Sanina N Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30544629 [TBL] [Abstract][Full Text] [Related]
33. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Anahas AMP; Muralitharan G Bioresour Technol; 2015 May; 184():9-17. PubMed ID: 25435067 [TBL] [Abstract][Full Text] [Related]
34. Assessing the prospects of Zygnema heydrichii, a filamentous Chlorophyte, as a biodiesel feedstock. Lalrinkimi ; Kant Mehta S Bioresour Technol; 2022 Feb; 345():126487. PubMed ID: 34871720 [TBL] [Abstract][Full Text] [Related]
35. Aspergillus caespitosus ASEF14, an oleaginous fungus as a potential candidate for biodiesel production using sago processing wastewater (SWW). Srinivasan N; Thangavelu K; Sekar A; Sanjeev B; Uthandi S Microb Cell Fact; 2021 Sep; 20(1):179. PubMed ID: 34503534 [TBL] [Abstract][Full Text] [Related]
37. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Li Z; Yuan H; Yang J; Li B Bioresour Technol; 2011 Oct; 102(19):9128-34. PubMed ID: 21803576 [TBL] [Abstract][Full Text] [Related]
38. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview. Juan JC; Kartika DA; Wu TY; Hin TY Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045 [TBL] [Abstract][Full Text] [Related]
39. Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Wang Q; Sen B; Liu X; He Y; Xie Y; Wang G Sci Total Environ; 2018 Aug; 631-632():994-1004. PubMed ID: 29728009 [TBL] [Abstract][Full Text] [Related]
40. Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. El-Sheekh MM; Galal HR; Mousa ASH; Farghl AAM Sci Rep; 2024 Feb; 14(1):2725. PubMed ID: 38302601 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]