These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 2857160)

  • 1. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?
    Hackstadt T; Todd WJ; Caldwell HD
    J Bacteriol; 1985 Jan; 161(1):25-31. PubMed ID: 2857160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Sublett JE
    J Bacteriol; 1986 Feb; 165(2):379-85. PubMed ID: 3944054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds.
    Raulston JE; Davis CH; Paul TR; Hobbs JD; Wyrick PB
    Infect Immun; 2002 Feb; 70(2):535-43. PubMed ID: 11796580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.
    Allan I; Hatch TP; Pearce JH
    J Gen Microbiol; 1985 Dec; 131(12):3171-7. PubMed ID: 3831232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of proteolytic cleavage of surface-exposed proteins on infectivity of Chlamydia trachomatis.
    Hackstadt T; Caldwell HD
    Infect Immun; 1985 May; 48(2):546-51. PubMed ID: 2580794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis.
    Newhall WJ
    Infect Immun; 1987 Jan; 55(1):162-8. PubMed ID: 3793227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibody response to epitopes of chlamydial major outer membrane proteins on infectious elementary bodies and of the reduced polyacrylamide gel electrophoresis-separated form.
    Baghian A; Shaffer L; Storz J
    Infect Immun; 1990 May; 58(5):1379-83. PubMed ID: 1691145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CrP operon of Chlamydia psittaci and Chlamydia pneumoniae.
    Watson MW; Clarke IN; Everson JS; Lambden PR
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2489-97. PubMed ID: 7582008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms.
    Saka HA; Thompson JW; Chen YS; Kumar Y; Dubois LG; Moseley MA; Valdivia RH
    Mol Microbiol; 2011 Dec; 82(5):1185-203. PubMed ID: 22014092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae.
    Newhall WJ; Jones RB
    J Bacteriol; 1983 May; 154(2):998-1001. PubMed ID: 6841322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of intracellular chlamydiae provide evidence for contact-dependent development.
    Wilson DP; Whittum-Hudson JA; Timms P; Bavoil PM
    J Bacteriol; 2009 Sep; 191(18):5734-42. PubMed ID: 19542292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis.
    Bavoil P; Ohlin A; Schachter J
    Infect Immun; 1984 May; 44(2):479-85. PubMed ID: 6715046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis?
    Coles AM; Reynolds DJ; Harper A; Devitt A; Pearce JH
    FEMS Microbiol Lett; 1993 Jan; 106(2):193-200. PubMed ID: 8454184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a particle-counting method for purified elementary bodies of chlamydiae and evaluation of sensitivities of the IDEIA Chlamydia kit and DNA probe by using the purified elementary bodies.
    Miyashita N; Matsumoto A
    J Clin Microbiol; 1992 Nov; 30(11):2911-6. PubMed ID: 1452662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Silverman JA
    J Bacteriol; 1985 Jun; 162(3):938-42. PubMed ID: 3997784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle.
    Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA
    Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.