BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28572191)

  • 21. Embryoid body formation: recent advances in automated bioreactor technology.
    Trettner S; Seeliger A; zur Nieden NI
    Methods Mol Biol; 2011; 690():135-49. PubMed ID: 21042990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenic Differentiation from Embryonic Stem Cells.
    Yu Y; Pilquil C; Opas M
    Methods Mol Biol; 2016; 1341():425-35. PubMed ID: 25417061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation.
    Carpenedo RL; Sargent CY; McDevitt TC
    Stem Cells; 2007 Sep; 25(9):2224-34. PubMed ID: 17585171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods for embryoid body formation: the microwell approach.
    Spelke DP; Ortmann D; Khademhosseini A; Ferreira L; Karp JM
    Methods Mol Biol; 2011; 690():151-62. PubMed ID: 21042991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Meniscus induced self organization of multiple deep concave wells in a microchannel for embryoid bodies generation.
    Jeong GS; Jun Y; Song JH; Shin SH; Lee SH
    Lab Chip; 2012 Jan; 12(1):159-66. PubMed ID: 22076418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes.
    Nakazawa K; Yoshiura Y; Koga H; Sakai Y
    J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies.
    Koike M; Sakaki S; Amano Y; Kurosawa H
    J Biosci Bioeng; 2007 Oct; 104(4):294-9. PubMed ID: 18023802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance and in vitro differentiation of mouse embryonic stem cells to form blood vessels.
    Kappas NC; Bautch VL
    Curr Protoc Cell Biol; 2007 Mar; Chapter 23():Unit 23.3. PubMed ID: 18228504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Derivation, propagation and differentiation of human embryonic stem cells.
    Conley BJ; Young JC; Trounson AO; Mollard R
    Int J Biochem Cell Biol; 2004 Apr; 36(4):555-67. PubMed ID: 15010323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of standard U-bottom and V-bottom well plates to generate neuroepithelial embryoid bodies.
    Choy Buentello D; Koch LS; Trujillo-de Santiago G; Alvarez MM; Broersen K
    PLoS One; 2022; 17(5):e0262062. PubMed ID: 35536781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled-size embryoid body formation in concave microwell arrays.
    Choi YY; Chung BG; Lee DH; Khademhosseini A; Kim JH; Lee SH
    Biomaterials; 2010 May; 31(15):4296-303. PubMed ID: 20206991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Skeletal Myocytes from Embryonic Stem Cells Through Nuclear Receptor Signaling.
    Chen J; Liang H; Gao A; Li Q
    Methods Mol Biol; 2019; 1966():247-252. PubMed ID: 31041753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse embryonic stem cell derivation, and mouse and human embryonic stem cell culture and differentiation as embryoid bodies.
    Conley BJ; Denham M; Gulluyan L; Olsson F; Cole TJ; Mollard R
    Curr Protoc Cell Biol; 2005 Oct; Chapter 23():Unit 23.2. PubMed ID: 18228472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform.
    Sivalingam J; Lam AT; Chen HY; Yang BX; Chen AK; Reuveny S; Loh YH; Oh SK
    Tissue Eng Part C Methods; 2016 Aug; 22(8):765-80. PubMed ID: 27392822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells.
    Taru Sharma G; Dubey PK; Verma OP; Pratheesh MD; Nath A; Sai Kumar G
    Biochem Biophys Res Commun; 2012 Aug; 424(3):378-84. PubMed ID: 22749767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-well chip for forming a uniform embryoid body in a tiny droplet with mouse embryonic stem cells.
    Kim C; Lee IH; Lee K; Ryu SS; Lee SH; Lee KJ; Lee J; Kang JY; Kim TS
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):2985-91. PubMed ID: 18071258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Modified SMART-Seq Method for Single-Cell Transcriptomic Analysis of Embryoid Body Differentiation.
    Zheng J; Ye Y; Xu Q; Xu W; Zhang W; Chen X
    Methods Mol Biol; 2022; 2520():233-259. PubMed ID: 34661880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stirred suspension culture improves embryoid body formation and cardiogenic differentiation of genetically modified embryonic stem cells.
    He W; Ye L; Li S; Liu H; Wang Q; Fu X; Han W; Chen Z
    Biol Pharm Bull; 2012; 35(3):308-16. PubMed ID: 22382315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies.
    Nguyen D; Sa S; Pegan JD; Rich B; Xiang G; McCloskey KE; Manilay JO; Khine M
    Lab Chip; 2009 Dec; 9(23):3338-44. PubMed ID: 19904398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene induces spontaneous cardiac differentiation in embryoid bodies.
    Ahadian S; Zhou Y; Yamada S; Estili M; Liang X; Nakajima K; Shiku H; Matsue T
    Nanoscale; 2016 Apr; 8(13):7075-84. PubMed ID: 26960413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.