These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28572705)

  • 21. Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition: size and nuclear magnetic resonance studies.
    Belaïd S; Stanicki D; Vander Elst L; Muller RN; Laurent S
    Nanotechnology; 2018 Apr; 29(16):165603. PubMed ID: 29485102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-monotonic size change of monodisperse Fe₃O₄ nanoparticles in the scale-up synthesis.
    Song NN; Yang HT; Ren X; Li ZA; Luo Y; Shen J; Dai W; Zhang XQ; Cheng ZH
    Nanoscale; 2013 Apr; 5(7):2804-10. PubMed ID: 23440069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition.
    Wang D; Ma Q; Yang P
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ.
    Kashyap S; Woehl TJ; Liu X; Mallapragada SK; Prozorov T
    ACS Nano; 2014 Sep; 8(9):9097-106. PubMed ID: 25162493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors.
    Perez De Berti IO; Cagnoli MV; Pecchi G; Alessandrini JL; Stewart SJ; Bengoa JF; Marchetti SG
    Nanotechnology; 2013 May; 24(17):175601. PubMed ID: 23548801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-cost one-pot synthesis of hydrophobic and hydrophilic monodispersed iron oxide nanoparticles.
    Reja S; Kumar M; Vasudevan S
    Nanoscale Adv; 2024 Jul; 6(15):3857-3864. PubMed ID: 39050951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al
    Zacharaki E; Beato P; Tiruvalam RR; Andersson KJ; Fjellvåg H; Sjåstad AO
    Langmuir; 2017 Sep; 33(38):9836-9843. PubMed ID: 28832150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Palladium nanoparticle formation processes in fluoropolymers by thermal decomposition of organometallic precursors.
    Zeng FW; Zhang D; Spicer JB
    Phys Chem Chem Phys; 2018 Oct; 20(37):24389-24398. PubMed ID: 30221271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface mobility and impact of precursor dosing during atomic layer deposition of platinum: in situ monitoring of nucleation and island growth.
    Dendooven J; Van Daele M; Solano E; Ramachandran RK; Minjauw MM; Resta A; Vlad A; Garreau Y; Coati A; Portale G; Detavernier C
    Phys Chem Chem Phys; 2020 Nov; 22(43):24917-24933. PubMed ID: 33135021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of pre-nucleation clusters in the crystallization of gold nanoparticles.
    Ramamoorthy RK; Yildirim E; Barba E; Roblin P; Vargas JA; Lacroix LM; Rodriguez-Ruiz I; Decorse P; Petkov V; Teychené S; Viau G
    Nanoscale; 2020 Aug; 12(30):16173-16188. PubMed ID: 32701100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: tuning of multiple to single nucleation pathway.
    Naik AN; Patra S; Sen D; Goswami A
    Phys Chem Chem Phys; 2019 Feb; 21(8):4193-4199. PubMed ID: 30734801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition.
    Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays.
    Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L
    Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
    Jun YS; Kim D; Neil CW
    Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T
    Zhang H; Li L; Liu XL; Jiao J; Ng CT; Yi JB; Luo YE; Bay BH; Zhao LY; Peng ML; Gu N; Fan HM
    ACS Nano; 2017 Apr; 11(4):3614-3631. PubMed ID: 28371584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalous dependence of particle size on supersaturation in the preparation of iron nanoparticles from iron pentacarbonyl.
    Huuppola M; Zhu Z; Johansson LS; Kontturi K; Laasonen K; Johans C
    J Colloid Interface Sci; 2012 Nov; 386(1):28-33. PubMed ID: 22921409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth.
    Chen Z; Liu J; Evans AJ; Alberch L; Wei A
    Chem Mater; 2014; 26(2):941-950. PubMed ID: 25960603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.
    Kwon SG; Chattopadhyay S; Koo B; Dos Santos Claro PC; Shibata T; Requejo FG; Giovanetti LJ; Liu Y; Johnson C; Prakapenka V; Lee B; Shevchenko EV
    Nano Lett; 2016 Jun; 16(6):3738-47. PubMed ID: 27152970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging.
    Patsula V; Kosinová L; Lovrić M; Ferhatovic Hamzić L; Rabyk M; Konefal R; Paruzel A; Šlouf M; Herynek V; Gajović S; Horák D
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7238-47. PubMed ID: 26928653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices.
    Sun S; Murray CB; Weller D; Folks L; Moser A
    Science; 2000 Mar; 287(5460):1989-92. PubMed ID: 10720318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.