BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28572706)

  • 1. Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design.
    Hendon CH; Butler KT; Ganose AM; Román-Leshkov Y; Scanlon DO; Ozin GA; Walsh A
    Chem Mater; 2017 Apr; 29(8):3663-3670. PubMed ID: 28572706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts.
    Chen W; Liu Y; Li Y; Sun J; Qiu Y; Liu C; Zhou G; Cui Y
    Nano Lett; 2016 Dec; 16(12):7588-7596. PubMed ID: 27960466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides.
    Miró P; Ghorbani-Asl M; Heine T
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):3015-8. PubMed ID: 24554594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.
    Luc W; Jiao F
    Acc Chem Res; 2016 Jul; 49(7):1351-8. PubMed ID: 27294847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.
    Lin Q; Bu X; Mao C; Zhao X; Sasan K; Feng P
    J Am Chem Soc; 2015 May; 137(19):6184-7. PubMed ID: 25950820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Dimensional Janus Transition Metal Oxides and Chalcogenides: Multifunctional Properties for Photocatalysts, Electronics, and Energy Conversion.
    Chen W; Hou X; Shi X; Pan H
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35289-35295. PubMed ID: 30238747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling.
    Yuan H; Wang H; Cui Y
    Acc Chem Res; 2015 Jan; 48(1):81-90. PubMed ID: 25553585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting transition pressures for obtaining nanoporous semiconductor polymorphs: oxides and chalcogenides of Zn, Cd and Mg.
    Sangthong W; Limtrakul J; Illas F; Bromley ST
    Phys Chem Chem Phys; 2010 Aug; 12(30):8513-20. PubMed ID: 20607168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge- and Size-Complementary Multimetal-Induced Morphology and Phase Control in Zeolite-Type Metal Chalcogenides.
    Chen X; Bu X; Wang Y; Lin Q; Feng P
    Chemistry; 2018 Jul; 24(42):10812-10819. PubMed ID: 29949209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions.
    Zhao W; Zhang C; Geng F; Zhuo S; Zhang B
    ACS Nano; 2014 Oct; 8(10):10909-19. PubMed ID: 25283816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition.
    Ma F; Gao G; Jiao Y; Gu Y; Bilic A; Zhang H; Chen Z; Du A
    Nanoscale; 2016 Mar; 8(9):4969-75. PubMed ID: 26620395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared.
    Kumaar D; Can M; Portner K; Weigand H; Yarema O; Wintersteller S; Schenk F; Boskovic D; Pharizat N; Meinert R; Gilshtein E; Romanyuk Y; Karvounis A; Grange R; Emboras A; Wood V; Yarema M
    ACS Nano; 2023 Apr; 17(7):6985-6997. PubMed ID: 36971128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Straightforward route to the adamantane clusters [Sn4Q10]4- (Q = S, Se, Te) and use in the assembly of open-framework chalcogenides (Me4N)2M[Sn4Se10] (M = Mn(II), Fe(II), Co(II), Zn(II)) including the first telluride member (Me4N)2Mn[Ge4Te10].
    Tsamourtzi K; Song JH; Bakas T; Freeman AJ; Trikalitis PN; Kanatzidis MG
    Inorg Chem; 2008 Dec; 47(24):11920-9. PubMed ID: 18998670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations.
    Hasan S; Baral K; Li N; Ching WY
    Sci Rep; 2021 May; 11(1):9921. PubMed ID: 33972617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks.
    Kim TK; Lee KJ; Cheon JY; Lee JH; Joo SH; Moon HR
    J Am Chem Soc; 2013 Jun; 135(24):8940-6. PubMed ID: 23651169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters.
    Sun D; Riley AE; Cadby AJ; Richman EK; Korlann SD; Tolbert SH
    Nature; 2006 Jun; 441(7097):1126-30. PubMed ID: 16810251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.