These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28572762)

  • 1. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms.
    Liu MY; Huang A; Huang NE
    Front Hum Neurosci; 2017; 11():261. PubMed ID: 28572762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing.
    Tsanas A; Clifford GD
    Front Hum Neurosci; 2015; 9():181. PubMed ID: 25926784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform.
    Adamczyk M; Genzel L; Dresler M; Steiger A; Friess E
    Front Hum Neurosci; 2015; 9():624. PubMed ID: 26635577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep spindles and spike-wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis.
    Sitnikova E; Hramov AE; Koronovsky AA; van Luijtelaar G
    J Neurosci Methods; 2009 Jun; 180(2):304-16. PubMed ID: 19383511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic sleep spindle detector based on wavelets and the teager energy operator.
    Ahmed B; Redissi A; Tafreshi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2596-9. PubMed ID: 19965220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust two-stage sleep spindle detection approach using single-channel EEG.
    Jiang D; Ma Y; Wang Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326950
    [No Abstract]   [Full Text] [Related]  

  • 10. Spectral and temporal characterization of sleep spindles-methodological implications.
    Gomez-Pilar J; Gutiérrez-Tobal GC; Poza J; Fogel S; Doyon J; Northoff G; Hornero R
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33618345
    [No Abstract]   [Full Text] [Related]  

  • 11. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.
    Parekh A; Selesnick IW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies.
    Ujma PP; Gombos F; Genzel L; Konrad BN; Simor P; Steiger A; Dresler M; Bódizs R
    Front Hum Neurosci; 2015; 9():52. PubMed ID: 25741264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep spindle detection based on non-experts: A validation study.
    Zhao R; Sun J; Zhang X; Wu H; Liu P; Yang X; Qin W
    PLoS One; 2017; 12(5):e0177437. PubMed ID: 28493938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground truth construction and parameter tuning for the detection of sleep spindle timing in rodents.
    Harper B; Fellous JM
    J Neurosci Methods; 2019 Feb; 313():13-23. PubMed ID: 30529457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveil sleep spindles with concentration of frequency and time (ConceFT).
    Shimizu R; Wu HT
    Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095
    [No Abstract]   [Full Text] [Related]  

  • 17. Spindle-AI: Sleep Spindle Number and Duration Estimation in Infant EEG.
    Wei L; Ventura S; Mathieson S; Boylan G; Lowery M; Mooney C
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):465-474. PubMed ID: 34280088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing.
    Kabir MM; Tafreshi R; Boivin DB; Haddad N
    Med Biol Eng Comput; 2015 Jul; 53(7):635-44. PubMed ID: 25779627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis.
    Lajnef T; Chaibi S; Eichenlaub JB; Ruby PM; Aguera PE; Samet M; Kachouri A; Jerbi K
    Front Hum Neurosci; 2015; 9():414. PubMed ID: 26283943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multichannel sleep spindle detection using sparse low-rank optimization.
    Parekh A; Selesnick IW; Osorio RS; Varga AW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2017 Aug; 288():1-16. PubMed ID: 28600157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.