These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28572797)
1. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Bosire EM; Rosenbaum MA Front Microbiol; 2017; 8():892. PubMed ID: 28572797 [No Abstract] [Full Text] [Related]
2. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Bosire EM; Blank LM; Rosenbaum MA Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325 [TBL] [Abstract][Full Text] [Related]
3. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. Jo J; Price-Whelan A; Cornell WC; Dietrich LEP J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778 [TBL] [Abstract][Full Text] [Related]
4. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Franco A; Elbahnasy M; Rosenbaum MA Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174 [TBL] [Abstract][Full Text] [Related]
5. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Sakhtah H; Koyama L; Zhang Y; Morales DK; Fields BL; Price-Whelan A; Hogan DA; Shepard K; Dietrich LE Proc Natl Acad Sci U S A; 2016 Jun; 113(25):E3538-47. PubMed ID: 27274079 [TBL] [Abstract][Full Text] [Related]
6. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA Front Microbiol; 2015; 6():284. PubMed ID: 25914687 [TBL] [Abstract][Full Text] [Related]
7. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron. Kang J; Cho YH; Lee Y Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913 [TBL] [Abstract][Full Text] [Related]
8. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa. Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591 [TBL] [Abstract][Full Text] [Related]
9. Controlling the Production of Schmitz S; Rosenbaum MA ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592 [TBL] [Abstract][Full Text] [Related]
10. Boosting Heterologous Phenazine Production in Askitosari TD; Boto ST; Blank LM; Rosenbaum MA Front Microbiol; 2019; 10():1990. PubMed ID: 31555229 [TBL] [Abstract][Full Text] [Related]
11. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Chukwubuikem A; Berger C; Mady A; Rosenbaum MA Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093 [TBL] [Abstract][Full Text] [Related]
12. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
13. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472 [TBL] [Abstract][Full Text] [Related]
14. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858 [TBL] [Abstract][Full Text] [Related]
15. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598 [TBL] [Abstract][Full Text] [Related]
16. Nitrate Reduction Stimulates and Is Stimulated by Phenazine-1-Carboxylic Acid Oxidation by Citrobacter portucalensis MBL. Tsypin LM; Newman DK mBio; 2021 Aug; 12(4):e0226521. PubMed ID: 34465028 [TBL] [Abstract][Full Text] [Related]
17. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes. Yu YY; Zhang Y; Peng L Sci Total Environ; 2022 Sep; 838(Pt 3):156501. PubMed ID: 35667430 [TBL] [Abstract][Full Text] [Related]
18. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Simoska O; Sans M; Eberlin LS; Shear JB; Stevenson KJ Biosens Bioelectron; 2019 Oct; 142():111538. PubMed ID: 31376710 [TBL] [Abstract][Full Text] [Related]
20. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Hunter RC; Klepac-Ceraj V; Lorenzi MM; Grotzinger H; Martin TR; Newman DK Am J Respir Cell Mol Biol; 2012 Dec; 47(6):738-45. PubMed ID: 22865623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]