BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28572797)

  • 1. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by
    Bosire EM; Rosenbaum MA
    Front Microbiol; 2017; 8():892. PubMed ID: 28572797
    [No Abstract]   [Full Text] [Related]  

  • 2. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.
    Sakhtah H; Koyama L; Zhang Y; Morales DK; Fields BL; Price-Whelan A; Hogan DA; Shepard K; Dietrich LE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):E3538-47. PubMed ID: 27274079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa.
    Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA
    Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Heterologous Phenazine Production in
    Askitosari TD; Boto ST; Blank LM; Rosenbaum MA
    Front Microbiol; 2019; 10():1990. PubMed ID: 31555229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays.
    Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ
    ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.
    Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP
    Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes.
    Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH
    Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate Reduction Stimulates and Is Stimulated by Phenazine-1-Carboxylic Acid Oxidation by Citrobacter portucalensis MBL.
    Tsypin LM; Newman DK
    mBio; 2021 Aug; 12(4):e0226521. PubMed ID: 34465028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes.
    Yu YY; Zhang Y; Peng L
    Sci Total Environ; 2022 Sep; 838(Pt 3):156501. PubMed ID: 35667430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium.
    Simoska O; Sans M; Eberlin LS; Shear JB; Stevenson KJ
    Biosens Bioelectron; 2019 Oct; 142():111538. PubMed ID: 31376710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity.
    Hunter RC; Klepac-Ceraj V; Lorenzi MM; Grotzinger H; Martin TR; Newman DK
    Am J Respir Cell Mol Biol; 2012 Dec; 47(6):738-45. PubMed ID: 22865623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.