These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28573026)

  • 1. Non-invasive biophysical measurement of travelling waves in the insect inner ear.
    Sarria-S FA; Chivers BD; Soulsbury CD; Montealegre-Z F
    R Soc Open Sci; 2017 May; 4(5):170171. PubMed ID: 28573026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A numerical approach to investigating the mechanisms behind tonotopy in the bush-cricket inner-ear.
    Celiker E; Woodrow C; Mhatre N; Montealegre-Z F
    Front Insect Sci; 2022; 2():957385. PubMed ID: 38468802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory mechanics in the grig (
    Woodrow C; Pulver C; Song H; Montealegre-Z F
    Proc Biol Sci; 2022 Apr; 289(1973):20220398. PubMed ID: 35473380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Auditory Mechanics of the Outer Ear of the Bush Cricket: A Numerical Approach.
    Celiker E; Jonsson T; Montealegre-Z F
    Biophys J; 2020 Jan; 118(2):464-475. PubMed ID: 31874708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the exponential horn: a bush-cricket with ear canals which function as coupled resonators.
    Celiker E; Woodrow C; Rocha-Sánchez AY; Chivers BD; Barrientos-Lozano L; Montealegre-Z F
    R Soc Open Sci; 2022 Oct; 9(10):220532. PubMed ID: 36312569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets.
    Palghat Udayashankar A; Kössl M; Nowotny M
    PLoS One; 2012; 7(2):e31008. PubMed ID: 22348035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the tympanic membrane impedance of the katydid Copiphora gorgonensis (Insecta: Orthoptera: Tettigoniidae).
    Celiker E; Jonsson T; Montealegre-Z F
    J Acoust Soc Am; 2020 Oct; 148(4):1952. PubMed ID: 33138497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of bush-cricket acoustic trachea mechanics using Atomic Force Microscopy nanoindentation.
    Siamantouras E; Woodrow C; Celiker E; Cullen DA; Hills CE; Squires PE; Montealegre-Z F
    Acta Biomater; 2022 Nov; 153():399-410. PubMed ID: 36055609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver.
    Jonsson T; Montealegre-Z F; Soulsbury CD; Robson Brown KA; Robert D
    J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27683000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory fovea in the ear of a duetting katydid shows male-specific adaptation to the female call.
    Scherberich J; Hummel J; Schöneich S; Nowotny M
    Curr Biol; 2016 Dec; 26(23):R1222-R1223. PubMed ID: 27923127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of intra-cochlear pressure waves.
    Olson ES
    Nature; 1999 Dec; 402(6761):526-9. PubMed ID: 10591211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae).
    Jonsson T; Chivers BD; Robson Brown K; Sarria-S FA; Walker M; Montealegre-Z F
    J Exp Biol; 2017 Aug; 220(Pt 16):2900-2907. PubMed ID: 28596213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Theoretical Explorations of Traveling Waves and Tuning in the Bushcricket Ear.
    Olson ES; Nowotny M
    Biophys J; 2019 Jan; 116(1):165-177. PubMed ID: 30573177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica.
    Scherberich J; Taszus R; Stoessel A; Nowotny M
    Proc Biol Sci; 2020 Jun; 287(1929):20200909. PubMed ID: 32576108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Frequency Selectivity Approach Based on Travelling Wave Propagation in Mechanoluminescence Basilar Membrane for Artificial Cochlea.
    Kim Y; Kim JS; Kim GW
    Sci Rep; 2018 Aug; 8(1):12023. PubMed ID: 30104692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of hearing in katydids.
    Montealegre-Z F; Robert D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):5-18. PubMed ID: 25515594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Travelling waves and tonotopicity in the inner ear: a historical and comparative perspective.
    Manley GA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Oct; 204(9-10):773-781. PubMed ID: 30116889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.