These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28573205)

  • 41. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Universally Exhaustive Generation of Molecular Structures and Prediction of Their Electronic States Using Machine Learning for N-type Organic Transistor Materials.
    Ohno A; Hanna JI; Iino H; Nakago K; Yamaguchi T; Abe M; Akita H; Takemoto M
    Chem Asian J; 2023 Apr; 18(8):e202300029. PubMed ID: 36808824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Learning to predict chemical reactions.
    Kayala MA; Azencott CA; Chen JH; Baldi P
    J Chem Inf Model; 2011 Sep; 51(9):2209-22. PubMed ID: 21819139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A sampling-based method for ranking protein structural models by integrating multiple scores and features.
    Shi X; Zhang J; He Z; Shang Y; Xu D
    Curr Protein Pept Sci; 2011 Sep; 12(6):540-8. PubMed ID: 21787308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
    Sinclair P; Kable A; Levett-Jones T
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):52-64. PubMed ID: 26447007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.
    Schneider N; Lowe DM; Sayle RA; Landrum GA
    J Chem Inf Model; 2015 Jan; 55(1):39-53. PubMed ID: 25541888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias.
    Kovács DP; McCorkindale W; Lee AA
    Nat Commun; 2021 Mar; 12(1):1695. PubMed ID: 33727552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Planning chemical syntheses with deep neural networks and symbolic AI.
    Segler MHS; Preuss M; Waller MP
    Nature; 2018 Mar; 555(7698):604-610. PubMed ID: 29595767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, implementation, and evaluation of the computer-aided clinical decision support system based on learning-to-rank: collaboration between physicians and machine learning in the differential diagnosis process.
    Miyachi Y; Ishii O; Torigoe K
    BMC Med Inform Decis Mak; 2023 Feb; 23(1):26. PubMed ID: 36732730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated stopped-flow library synthesis for rapid optimisation and machine learning directed experimentation.
    Avila C; Cassani C; Kogej T; Mazuela J; Sarda S; Clayton AD; Kossenjans M; Green CP; Bourne RA
    Chem Sci; 2022 Oct; 13(41):12087-12099. PubMed ID: 36349112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning.
    Skoraczyński G; Kitlas M; Miasojedow B; Gambin A
    J Cheminform; 2023 Jan; 15(1):6. PubMed ID: 36641473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of Experimental Conditions with Machine Learning for Collaborative Organic Synthesis Reactions Using Transition-Metal Catalysts.
    Ebi T; Sen A; Dhital RN; Yamada YMA; Kaneko H
    ACS Omega; 2021 Oct; 6(41):27578-27586. PubMed ID: 34693179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.
    Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H
    ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.