These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28573322)

  • 1. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections.
    Sojinrin T; Conde J; Liu K; Curtin J; Byrne HJ; Cui D; Tian F
    Anal Bioanal Chem; 2017 Jul; 409(19):4647-4658. PubMed ID: 28573322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic cell nanocoating: a new concept for rapid microbial screening.
    Xu K; Bui MN; Fang A; Abbas A
    Anal Bioanal Chem; 2017 Nov; 409(27):6305-6314. PubMed ID: 28905084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.
    Shen L; Chen J; Li N; He P; Li Z
    Anal Chim Acta; 2014 Aug; 839():83-90. PubMed ID: 25066722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay.
    Khan SA; DeGrasse JA; Yakes BJ; Croley TR
    Anal Chim Acta; 2015 Sep; 892():167-74. PubMed ID: 26388488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycofabrication of common plasmonic colloids, theoretical considerations, mechanism and potential applications.
    Madden O; Naughton MD; Moane S; Murray PG
    Adv Colloid Interface Sci; 2015 Nov; 225():37-52. PubMed ID: 26320607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.
    Lakatos M; Matys S; Raff J; Pompe W
    Talanta; 2015 Nov; 144():241-6. PubMed ID: 26452816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.
    Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X
    Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Control of Microtubule Morphology Obtained by Assembling Gold Nanoparticles on Living Fungal Biotemplates.
    Kubo AM; Gorup LF; Amaral LS; Filho ER; Camargo ER
    Bioconjug Chem; 2016 Oct; 27(10):2337-2345. PubMed ID: 27623088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydration on plasmonic coupling of bioconjugated gold nanoparticles immobilized on a gold film probed by surface-enhanced Raman spectroscopy.
    Driskell JD; Larrick CG; Trunell C
    Langmuir; 2014 Jun; 30(22):6309-13. PubMed ID: 24854627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.
    Kang J; Zhang Y; Li X; Miao L; Wu A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycofabrication of gold nanoparticles and evaluation of their antioxidant activities.
    Chakravarty I; Pradeepam RJ; Kundu K; Singh PK; Kundu S
    Curr Pharm Biotechnol; 2015; 16(8):747-55. PubMed ID: 26044865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric sensing of selenocystine using gold nanoparticles.
    Liu L; Wang X; Yang J; Bai Y
    Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection.
    Ahmed SR; Kim J; Suzuki T; Lee J; Park EY
    Biosens Bioelectron; 2016 Nov; 85():503-508. PubMed ID: 27209577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A colorimetric and surface-enhanced Raman scattering dual-signal sensor for Hg2+ based on Bismuthiol II-capped gold nanoparticles.
    Duan J; Yang M; Lai Y; Yuan J; Zhan J
    Anal Chim Acta; 2012 Apr; 723():88-93. PubMed ID: 22444578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures.
    Shen J; Xu L; Wang C; Pei H; Tai R; Song S; Huang Q; Fan C; Chen G
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8338-42. PubMed ID: 24954711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid detection of microorganisms with nanoparticles and electron microscopy.
    Naja G; Hrapovic S; Male K; Bouvrette P; Luong JH
    Microsc Res Tech; 2008 Oct; 71(10):742-8. PubMed ID: 18570338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems.
    Shevchenko KG; Cherkasov VR; Tregubov AA; Nikitin PI; Nikitin MP
    Biosens Bioelectron; 2017 Feb; 88():3-8. PubMed ID: 27665167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.