BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28573338)

  • 1. Characterization of Inducible ccdB Gene as a Counterselectable Marker in Escherichia coli Recombineering.
    Zhang Q; Yan Z; Xu Y; Sun J; Shang G
    Curr Microbiol; 2017 Aug; 74(8):961-964. PubMed ID: 28573338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel Escherichia coli recombineering selection/counterselection cassette.
    Zhang G; Zhang Q; Wang J; Zhang J; Shang G
    Biotechnol Lett; 2023 Feb; 45(2):191-197. PubMed ID: 36495358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved seamless mutagenesis by recombineering using ccdB for counterselection.
    Wang H; Bian X; Xia L; Ding X; Müller R; Zhang Y; Fu J; Stewart AF
    Nucleic Acids Res; 2014 Mar; 42(5):e37. PubMed ID: 24369425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J; Dong H; Ma C; Zhao B; Shang G
    FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scarless DNA Recombineering.
    Figueroa-Bossi N; Balbontín R; Bossi L
    Cold Spring Harb Protoc; 2023 Sep; 2023(9):638-650. PubMed ID: 36813479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive-selection vectors using the F plasmid ccdB killer gene.
    Bernard P; Gabant P; Bahassi EM; Couturier M
    Gene; 1994 Oct; 148(1):71-4. PubMed ID: 7926841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola.
    Kurniyati K; Li C
    Appl Environ Microbiol; 2016 Feb; 82(4):1346-52. PubMed ID: 26682856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mazF as a counter-selectable marker for unmarked genetic modification of Pichia pastoris.
    Yang J; Jiang W; Yang S
    FEMS Yeast Res; 2009 Jun; 9(4):600-9. PubMed ID: 19416369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed Transgenic Selection and Counterselection Strategies to Expedite Genetic Manipulation Workflows Using Drosophila melanogaster.
    Venken KJT; Matinyan N; Gonzalez Y; Dierick HA
    Curr Protoc; 2023 Feb; 3(2):e652. PubMed ID: 36757287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression.
    Wang H; Li Z; Jia R; Hou Y; Yin J; Bian X; Li A; Müller R; Stewart AF; Fu J; Zhang Y
    Nat Protoc; 2016 Jul; 11(7):1175-90. PubMed ID: 27254463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of recombineering substrates with standard-size PCR primers.
    Xu K; Hua J; Roberts KJ; Figurski DH
    FEMS Microbiol Lett; 2012 Dec; 337(2):97-103. PubMed ID: 23003673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains.
    Lee DJ; Bingle LE; Heurlier K; Pallen MJ; Penn CW; Busby SJ; Hobman JL
    BMC Microbiol; 2009 Dec; 9():252. PubMed ID: 20003185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [pBR322-Red mediated gene knockin, sites and expression in E. coli chromosome].
    Chen W; Li SH; Yu M; Wang MG; Zhou JG
    Yi Chuan; 2006 Jan; 28(1):71-7. PubMed ID: 16469720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted chromosomal gene knockout using PCR fragments.
    Murphy KC
    Methods Mol Biol; 2011; 765():27-42. PubMed ID: 21815084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markerless Deletion System for Escherichia coli Using Short Homologous Sequences and Positive-Negative Selectable Cassette.
    Chen F; Jiang J; OuYang H; Ma T; Peng Z; Ma Y; Chen X; Pang D; Lin S; Ren L
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1472-81. PubMed ID: 25957274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration.
    Al-Hinai MA; Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2012 Nov; 78(22):8112-21. PubMed ID: 22983967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Gene Modification by BAC Recombineering.
    Hu Z; Ghosh A; Koncz C
    Methods Mol Biol; 2022; 2479():71-84. PubMed ID: 35583733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria.
    Xin Y; Guo T; Mu Y; Kong J
    Microb Cell Fact; 2017 Jul; 16(1):116. PubMed ID: 28679374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.