These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28573466)
1. Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission. Zheng B; Tang M; Yu J; Qiu J J Math Biol; 2018 Jan; 76(1-2):235-263. PubMed ID: 28573466 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia. Taghikhani R; Sharomi O; Gumel AB Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316 [TBL] [Abstract][Full Text] [Related]
3. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Zheng B; Guo W; Hu L; Huang M; Yu J Math Biosci Eng; 2018 Apr; 15(2):523-541. PubMed ID: 29161848 [TBL] [Abstract][Full Text] [Related]
4. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations. Campo-Duarte DE; Vasilieva O; Cardona-Salgado D; Svinin M J Math Biol; 2018 Jun; 76(7):1907-1950. PubMed ID: 29429122 [TBL] [Abstract][Full Text] [Related]
5. Modelling the transmission dynamics of dengue in the presence of Wolbachia. Ndii MZ; Hickson RI; Allingham D; Mercer GN Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184 [TBL] [Abstract][Full Text] [Related]
6. Hindrances to bistable front propagation: application to Wolbachia invasion. Nadin G; Strugarek M; Vauchelet N J Math Biol; 2018 May; 76(6):1489-1533. PubMed ID: 28939962 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model. Strugarek M; Vauchelet N; Zubelli JP Math Biosci Eng; 2018 Aug; 15(4):961-991. PubMed ID: 30380317 [TBL] [Abstract][Full Text] [Related]
8. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. Li Y; Liu X J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205 [TBL] [Abstract][Full Text] [Related]
9. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. Bliman PA; Aronna MS; Coelho FC; da Silva MAHB J Math Biol; 2018 Apr; 76(5):1269-1300. PubMed ID: 28856446 [TBL] [Abstract][Full Text] [Related]
10. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size. Liu YF; Sun GW; Wang L; Guo ZM Math Biosci Eng; 2019 May; 16(5):4399-4414. PubMed ID: 31499668 [TBL] [Abstract][Full Text] [Related]
11. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Schraiber JG; Kaczmarczyk AN; Kwok R; Park M; Silverstein R; Rutaganira FU; Aggarwal T; Schwemmer MA; Hom CL; Grosberg RK; Schreiber SJ J Theor Biol; 2012 Mar; 297():26-32. PubMed ID: 22192469 [TBL] [Abstract][Full Text] [Related]
12. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Zhang X; Tang S; Liu Q; Cheke RA; Zhu H Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790 [TBL] [Abstract][Full Text] [Related]
13. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio. Huang MG; Tang MX; Yu JS; Zheng B Math Biosci Eng; 2019 May; 16(5):4741-4757. PubMed ID: 31499687 [TBL] [Abstract][Full Text] [Related]
14. Wolbachia spread dynamics in multi-regimes of environmental conditions. Hu L; Huang M; Tang M; Yu J; Zheng B J Theor Biol; 2019 Feb; 462():247-258. PubMed ID: 30448462 [TBL] [Abstract][Full Text] [Related]
15. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation. Zhang X; Tang S; Cheke RA; Zhu H Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242 [TBL] [Abstract][Full Text] [Related]
16. Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model. Zheng B; Chen LH; Sun QW Math Biosci Eng; 2019 Jun; 16(5):5531-5550. PubMed ID: 31499724 [TBL] [Abstract][Full Text] [Related]
17. High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between Mancini MV; Ant TH; Herd CS; Martinez J; Murdochy SM; Gingell DD; Mararo E; Johnson PCD; Sinkins SP mBio; 2021 Dec; 12(6):e0025021. PubMed ID: 34749528 [TBL] [Abstract][Full Text] [Related]
18. Field- and clinically derived estimates of Carrington LB; Tran BCN; Le NTH; Luong TTH; Nguyen TT; Nguyen PT; Nguyen CVV; Nguyen HTC; Vu TT; Vo LT; Le DT; Vu NT; Nguyen GT; Luu HQ; Dang AD; Hurst TP; O'Neill SL; Tran VT; Kien DTH; Nguyen NM; Wolbers M; Wills B; Simmons CP Proc Natl Acad Sci U S A; 2018 Jan; 115(2):361-366. PubMed ID: 29279375 [TBL] [Abstract][Full Text] [Related]
20. Wolbachia invasion dynamics of a random mosquito population model with imperfect maternal transmission and incomplete CI. Wan H; Wu Y; Fan G; Li D J Math Biol; 2024 Apr; 88(6):72. PubMed ID: 38678110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]