These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 28573472)

  • 41. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases.
    Mori Y; Notomi T
    J Infect Chemother; 2009 Apr; 15(2):62-9. PubMed ID: 19396514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An integrated lateral flow assay for effective DNA amplification and detection at the point of care.
    Choi JR; Hu J; Gong Y; Feng S; Wan Abas WA; Pingguan-Murphy B; Xu F
    Analyst; 2016 May; 141(10):2930-9. PubMed ID: 27010033
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flow-through Capture and in Situ Amplification Can Enable Rapid Detection of a Few Single Molecules of Nucleic Acids from Several Milliliters of Solution.
    Schlappi TS; McCalla SE; Schoepp NG; Ismagilov RF
    Anal Chem; 2016 Aug; 88(15):7647-53. PubMed ID: 27429181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care.
    Ganguli A; Ornob A; Yu H; Damhorst GL; Chen W; Sun F; Bhuiya A; Cunningham BT; Bashir R
    Biomed Microdevices; 2017 Aug; 19(4):73. PubMed ID: 28831630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities.
    Reboud J; Xu G; Garrett A; Adriko M; Yang Z; Tukahebwa EM; Rowell C; Cooper JM
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4834-4842. PubMed ID: 30782834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A simple, inexpensive device for nucleic acid amplification without electricity-toward instrument-free molecular diagnostics in low-resource settings.
    LaBarre P; Hawkins KR; Gerlach J; Wilmoth J; Beddoe A; Singleton J; Boyle D; Weigl B
    PLoS One; 2011 May; 6(5):e19738. PubMed ID: 21573065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Infectious pathogens meet point-of-care diagnostics.
    Zarei M
    Biosens Bioelectron; 2018 May; 106():193-203. PubMed ID: 29428589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid ultrasonic isothermal amplification of DNA with multiplexed melting analysis – applications in the clinical diagnosis of sexually transmitted diseases.
    Xu G; Gunson RN; Cooper JM; Reboud J
    Chem Commun (Camb); 2015 Feb; 51(13):2589-92. PubMed ID: 25569801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrated sample-to-detection chip for nucleic acid test assays.
    Prakash R; Pabbaraju K; Wong S; Tellier R; Kaler KV
    Biomed Microdevices; 2016 Jun; 18(3):44. PubMed ID: 27165104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Digital Microfluidics for Nucleic Acid Amplification.
    Coelho B; Veigas B; Fortunato E; Martins R; Águas H; Igreja R; Baptista PV
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A smartphone-based on-site nucleic acid testing platform at point-of-care settings.
    Xu X; Wang X; Hu J; Gong Y; Wang L; Zhou W; Li X; Xu F
    Electrophoresis; 2019 Mar; 40(6):914-921. PubMed ID: 30511768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients.
    Bentaleb EM; Abid M; El Messaoudi MD; Lakssir B; Ressami EM; Amzazi S; Sefrioui H; Ait Benhassou H
    BMC Infect Dis; 2016 Sep; 16(1):517. PubMed ID: 27677540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loop-mediated isothermal amplification technology: towards point of care diagnostics.
    Njiru ZK
    PLoS Negl Trop Dis; 2012; 6(6):e1572. PubMed ID: 22745836
    [No Abstract]   [Full Text] [Related]  

  • 54. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples.
    Rodriguez NM; Wong WS; Liu L; Dewar R; Klapperich CM
    Lab Chip; 2016 Feb; 16(4):753-63. PubMed ID: 26785636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel techniques and future directions in molecular diagnosis of malaria in resource-limited settings.
    Oriero EC; Van Geertruyden JP; Nwakanma DC; D'Alessandro U; Jacobs J
    Expert Rev Mol Diagn; 2015; 15(11):1419-26. PubMed ID: 26413727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniaturized devices for point of care molecular detection of HIV.
    Mauk M; Song J; Bau HH; Gross R; Bushman FD; Collman RG; Liu C
    Lab Chip; 2017 Jan; 17(3):382-394. PubMed ID: 28092381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer.
    Choi G; Guan W
    Methods Mol Biol; 2022; 2393():257-278. PubMed ID: 34837184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings.
    Wang S; Lifson MA; Inci F; Liang LG; Sheng YF; Demirci U
    Expert Rev Mol Diagn; 2016; 16(4):449-59. PubMed ID: 26777725
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics.
    Sharma S; Zapatero-Rodríguez J; Estrela P; O'Kennedy R
    Biosensors (Basel); 2015 Aug; 5(3):577-601. PubMed ID: 26287254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.