BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28573563)

  • 1. Bioregeneration of spent mercury bearing sulfur-impregnated activated carbon adsorbent.
    Chen SY; Hsi HC; Shih MY
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5095-5104. PubMed ID: 28573563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon.
    Sowlat MH; Abdollahi M; Gharibi H; Yunesian M; Rastkari N
    Rev Environ Contam Toxicol; 2014; 230():1-34. PubMed ID: 24609516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent removal of elemental mercury and SO
    Balasundaram K; Sharma M
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15518-15528. PubMed ID: 29569202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.
    Gangupomu RH; Kositkanawuth K; Sattler ML; Ramirez D; Dennis BH; MacDonnell FM; Billo R; Priest JW
    J Air Waste Manag Assoc; 2012 May; 62(5):489-99. PubMed ID: 22696799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs).
    Hsi HC; Rood MJ; Rostam-Abadi M; Chen S; Chang R
    Environ Sci Technol; 2001 Jul; 35(13):2785-91. PubMed ID: 11452610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakthrough CO₂ adsorption in bio-based activated carbons.
    Shahkarami S; Azargohar R; Dalai AK; Soltan J
    J Environ Sci (China); 2015 Aug; 34():68-76. PubMed ID: 26257348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elemental mercury adsorption on sulfur-impregnated porous carbon - a review.
    Reddy KS; Shoaibi AA; Srinivasakannan C
    Environ Technol; 2014; 35(1-4):18-26. PubMed ID: 24600836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.
    Wei Y; Yu D; Tong S; Jia CQ
    Environ Sci Technol; 2015 Feb; 49(3):1706-12. PubMed ID: 25590356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.
    Zhou B; Yu L; Song H; Li Y; Zhang P; Guo B; Duan E
    J Air Waste Manag Assoc; 2015 Feb; 65(2):165-70. PubMed ID: 25947052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic review on the efficiency of cerium-impregnated activated carbons for the removal of gas-phase, elemental mercury from flue gas.
    Sowlat MH; Kakavandi B; Lotfi S; Yunesian M; Abdollahi M; Rezaei Kalantary R
    Environ Sci Pollut Res Int; 2017 May; 24(13):12092-12103. PubMed ID: 28321703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial regeneration of spent activated carbon dispersed with organic contaminants: mechanism, efficiency, and kinetic models.
    Nath K; Bhakhar MS
    Environ Sci Pollut Res Int; 2011 May; 18(4):534-46. PubMed ID: 21152991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison on surface properties and desulfurization of MnO
    Zhang G; Zhao X; Ning P; Yang D; Jiang X; Jiang W
    J Air Waste Manag Assoc; 2018 Sep; 68(9):958-968. PubMed ID: 29667516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.
    Saha A; Abram DN; Kuhl KP; Paradis J; Crawford JL; Sasmaz E; Chang R; Jaramillo TF; Wilcox J
    Environ Sci Technol; 2013 Dec; 47(23):13695-701. PubMed ID: 24256554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
    Park J; Lee SS
    J Air Waste Manag Assoc; 2018 Oct; 68(10):1077-1084. PubMed ID: 29693499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of bisphenol A by Fe-impregnated activated carbons.
    Arampatzidou A; Voutsa D; Deliyanni E
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25869-25879. PubMed ID: 29959743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Vapor-Phase Mercury Uptake by Virgin and Sulfur-Impregnated Activated Carbons.
    Vidic RD; Chang MT; Thurnau RC
    J Air Waste Manag Assoc; 1998 Mar; 48(3):247-255. PubMed ID: 29091549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of elemental mercury in flue gas by Arachis hypogaea Linn. shell generated activated carbon.
    Duan X; Yuan CG; Jing T; Yuan X; Xie J
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20055-20065. PubMed ID: 32236807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.
    Wu LC; Chung YC
    J Air Waste Manag Assoc; 2009 Mar; 59(3):258-65. PubMed ID: 19320264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous mercury adsorption by activated carbons.
    Hadi P; To MH; Hui CW; Lin CS; McKay G
    Water Res; 2015 Apr; 73():37-55. PubMed ID: 25644627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of sulfur oxides on mercury capture by activated carbon.
    Presto AA; Granite EJ
    Environ Sci Technol; 2007 Sep; 41(18):6579-84. PubMed ID: 17948811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.