BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28573687)

  • 1. Computational insights into the S
    Algarra AG
    J Comput Chem; 2017 Aug; 38(22):1966-1973. PubMed ID: 28573687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromaticity in transition structures.
    Schleyer Pv; Wu JI; Cossío FP; Fernández I
    Chem Soc Rev; 2014 Jul; 43(14):4909-21. PubMed ID: 24638823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double group transfer reactions: role of activation strain and aromaticity in reaction barriers.
    Fernández I; Bickelhaupt FM; Cossío FP
    Chemistry; 2009 Dec; 15(47):13022-32. PubMed ID: 19852009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between aromaticity and strain in double group transfer reactions to 1,2-benzyne.
    Fernández I; Cossío FP
    J Comput Chem; 2016 May; 37(14):1265-73. PubMed ID: 26864872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and aromaticity of the cyclopenta-fused pyrene congeners.
    Havenith RW; Jiao H; Jenneskens LW; van Lenthe JH; Sarobe M; Schleyer Pv; Kataoka M; Necula A; Scott LT
    J Am Chem Soc; 2002 Mar; 124(10):2363-70. PubMed ID: 11878993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local aromaticity of the five-membered rings in acenaphthylene derivatives.
    Radenković S; Đurđević J; Bultinck P
    Phys Chem Chem Phys; 2012 Oct; 14(40):14067-78. PubMed ID: 22990523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noyori hydrogenation: aromaticity, synchronicity, and activation strain analysis.
    Nieto Faza O; Silva López C; Fernández I
    J Org Chem; 2013 Jun; 78(11):5669-76. PubMed ID: 23682977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An energetic measure of aromaticity and antiaromaticity based on the Pauling-Wheland resonance energies.
    Mo Y; von Ragué Schleyer P
    Chemistry; 2006 Feb; 12(7):2009-20. PubMed ID: 16342222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on cycloaddition reactions between the 2-aza-1,3-butadiene cation and olefins.
    Ding YQ; Fang DC
    J Org Chem; 2003 May; 68(11):4382-7. PubMed ID: 12762740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Ligand Cooperative Reactivity in the (Pseudo)-Dearomatized PN
    Gonçalves TP; Huang KW
    J Am Chem Soc; 2017 Sep; 139(38):13442-13449. PubMed ID: 28862844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of transition state aromaticity and antiaromaticity on intrinsic barriers of proton transfers in aromatic and antiaromatic heterocyclic systems; an ab initio study.
    Bernasconi CF; Wenzel PJ
    J Org Chem; 2010 Dec; 75(24):8422-34. PubMed ID: 21080690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of an aromatic six-membered nitrogen ring via cation-pi interaction.
    Duan H; Gong Z; Cheng J; Zhu W; Chen K; Jiang H
    J Phys Chem A; 2006 Nov; 110(44):12236-40. PubMed ID: 17078620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of the aminolysis of anhydrides: effect of the catalysis to the reaction of succinic anhydride with methylamine in gas phase and nonpolar solution.
    Petrova T; Okovytyy S; Gorb L; Leszczynski J
    J Phys Chem A; 2008 Jun; 112(23):5224-35. PubMed ID: 18491887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetraazaacenes containing four-membered rings in different oxidation states. Are they aromatic? A computational study.
    Schaffroth M; Gershoni-Poranne R; Stanger A; Bunz UH
    J Org Chem; 2014 Dec; 79(23):11644-50. PubMed ID: 25386997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromaticity effects on the profiles of the lowest triplet-state potential-energy surfaces for rotation about the C=C bonds of olefins with five-membered ring substituents: an example of the impact of Baird's rule.
    Zhu J; Fogarty HA; Möllerstedt H; Brink M; Ottosson H
    Chemistry; 2013 Aug; 19(32):10698-707. PubMed ID: 23794153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. π-Hydrogen bonding and aromaticity: a systematic interplay study.
    Nekoei AR; Vatanparast M
    Phys Chem Chem Phys; 2019 Jan; 21(2):623-630. PubMed ID: 30540313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triplet State Aromaticity: NICS Criterion, Hyperconjugation, and Charge Effects.
    Sun H; An K; Zhu J
    Chem Asian J; 2016 Jan; 11(2):234-40. PubMed ID: 26507692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the aromaticity of transition states in pericyclic reactions.
    Sakai S
    J Phys Chem A; 2006 May; 110(19):6339-44. PubMed ID: 16686470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnosis of magnetoresponsive aromatic and antiaromatic zones in three-membered rings of d- and f-block elements.
    Tsipis AC; Depastas IG; Karagiannis EE; Tsipis CA
    J Comput Chem; 2010 Jan; 31(2):431-46. PubMed ID: 19499535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are electrocyclization reactions of (3Z)-1,3,5-hexatrienone and nitrogen derivatives pseudopericyclic? A DFT study.
    Cabaleiro-Lago EM; Rodríguez-Otero J; Varela-Varela SM; Peña-Gallego A; Hermida-Ramón JM
    J Org Chem; 2005 May; 70(10):3921-8. PubMed ID: 15876080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.