These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28574174)

  • 21. RISK-SENSITIVE ANTIPREDATOR BEHAVIOR IN THE TRINIDADIAN GUPPY, POECILIA RETICULATA.
    Botham MS; Hayward RK; Morrell LJ; Croft DP; Ward JR; Ramnarine I; Krause J
    Ecology; 2008 Nov; 89(11):3174-3185. PubMed ID: 31766795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure to predators does not lead to the evolution of larger brains in experimental populations of threespine stickleback.
    Samuk K; Xue J; Rennision DJ
    Evolution; 2018 Apr; 72(4):916-929. PubMed ID: 29392719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transplant experiments demonstrate that larger brains are favoured in high-competition environments in Trinidadian killifish.
    Howell KJ; Walsh MR
    Ecol Lett; 2023 Jan; 26(1):53-62. PubMed ID: 36262097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LIFE-HISTORY EVOLUTION IN GUPPIES (POECILIA RETICULATA): 1. PHENOTYPIC AND GENETIC CHANGES IN AN INTRODUCTION EXPERIMENT.
    Reznick DN; Bryga H
    Evolution; 1987 Nov; 41(6):1370-1385. PubMed ID: 28563598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams.
    Palkovacs EP; Marshall MC; Lamphere BA; Lynch BR; Weese DJ; Fraser DF; Reznick DN; Pringle CM; Kinnison MT
    Philos Trans R Soc Lond B Biol Sci; 2009 Jun; 364(1523):1617-28. PubMed ID: 19414475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).
    Torres-Dowdall J; Handelsman CA; Reznick DN; Ghalambor CK
    Evolution; 2012 Nov; 66(11):3432-43. PubMed ID: 23106708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.
    Siepielski AM; Beaulieu JM
    Evolution; 2017 Apr; 71(4):974-984. PubMed ID: 28094439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predator-prey interactions, flight initiation distance and brain size.
    Møller AP; Erritzøe J
    J Evol Biol; 2014 Jan; 27(1):34-42. PubMed ID: 25990564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. When Predators Help Prey Adapt and Persist in a Changing Environment.
    Osmond MM; Otto SP; Klausmeier CA
    Am Nat; 2017 Jul; 190(1):83-98. PubMed ID: 28617633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predator exposure alters stress physiology in guppies across timescales.
    Fischer EK; Harris RM; Hofmann HA; Hoke KL
    Horm Behav; 2014 Feb; 65(2):165-72. PubMed ID: 24370688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predation risk influences adaptive morphological variation in fish populations.
    Eklöv P; Svanbäck R
    Am Nat; 2006 Mar; 167(3):440-52. PubMed ID: 16673351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predation risk and the evolution of a vertebrate stress response: Parallel evolution of stress reactivity and sexual dimorphism.
    Vinterstare J; Ekelund Ugge GMO; Hulthén K; Hegg A; Brönmark C; Nilsson PA; Zellmer UR; Lee M; Pärssinen V; Sha Y; Björnerås C; Zhang H; Gollnisch R; Herzog SD; Hansson LA; Škerlep M; Hu N; Johansson E; Langerhans RB
    J Evol Biol; 2021 Oct; 34(10):1554-1567. PubMed ID: 34464014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can parasites use predators to spread between primary hosts?
    Cable J; Archard GA; Mohammed RS; McMullan M; Stephenson JF; Hansen H; van Oosterhout C
    Parasitology; 2013 Aug; 140(9):1138-43. PubMed ID: 23714691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.
    Rudolf VH
    J Anim Ecol; 2012 May; 81(3):524-32. PubMed ID: 22191419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The killifish Rivulus marmoratus: a potential biocontrol agent for Aedes taeniorhynchus and brackish water Culex.
    Taylor DS; Ritchie SA; Johnson E
    J Am Mosq Control Assoc; 1992 Mar; 8(1):80-3. PubMed ID: 1583495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of learning by a predator, Rivulus hartii, in the rare-morph survival advantage in guppies.
    Fraser BA; Hughes KA; Tosh DN; Rodd FH
    J Evol Biol; 2013 Dec; 26(12):2597-605. PubMed ID: 24118199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?
    ten Brink H; Mazumdar AK; Huddart J; Persson L; Cameron TC
    J Anim Ecol; 2015 Mar; 84(2):414-26. PubMed ID: 25314614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental factors influencing adult sex ratio in Poecilia reticulata: laboratory experiments.
    McKellar AE; Hendry AP
    J Fish Biol; 2011 Oct; 79(4):937-53. PubMed ID: 21967582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The ecological consequences of environmentally induced phenotypic changes.
    Gibert JP; Allen RL; Hruska RJ; DeLong JP
    Ecol Lett; 2017 Aug; 20(8):997-1003. PubMed ID: 28656609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.