These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28574372)

  • 1. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System.
    Shalbaf A; Saffar M; Sleigh JW; Shalbaf R
    IEEE J Biomed Health Inform; 2018 May; 22(3):671-677. PubMed ID: 28574372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the depth of anesthesia using entropy features and an artificial neural network.
    Shalbaf R; Behnam H; Sleigh JW; Steyn-Ross A; Voss LJ
    J Neurosci Methods; 2013 Aug; 218(1):17-24. PubMed ID: 23567809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derived fuzzy knowledge model for estimating the depth of anesthesia.
    Zhang XS; Roy RJ
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):312-23. PubMed ID: 11327499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Monitoring the depth of anesthesia using a fuzzy neural network based on EEG].
    Li M; Ye ZQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):253-5. PubMed ID: 17039930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia.
    Gu Y; Liang Z; Hagihira S
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic anesthesia depth staging using entropy measures and relative power of electroencephalogram frequency bands.
    Jahanseir M; Setarehdan SK; Momenzadeh S
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):919-929. PubMed ID: 30338496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-Periodicities Detection Using Phase-Rectified Signal Averaging in EEG Signals as a Depth of Anesthesia Monitor.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1773-1784. PubMed ID: 28391200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia.
    Li D; Li X; Liang Z; Voss LJ; Sleigh JW
    J Neural Eng; 2010 Aug; 7(4):046010. PubMed ID: 20581428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the level of hypnosis using a hierarchical SVM system.
    Shalbaf A; Shalbaf R; Saffar M; Sleigh J
    J Clin Monit Comput; 2020 Apr; 34(2):331-338. PubMed ID: 30982945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
    Güler I; Ubeyli ED
    J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying depth of anesthesia using EEG features, a comparison.
    Esmaeili V; Shamsollahi MB; Arefian NM; Assareh A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4106-9. PubMed ID: 18002905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface analysis using continuous wavelet transform and adaptive neuro-fuzzy classifier.
    Darvishi S; Al-Ani A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3220-3. PubMed ID: 18002681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the effects of sevoflurane on electroencephalogram using sample entropy.
    Shalbaf R; Behnam H; Sleigh J; Voss L
    Acta Anaesthesiol Scand; 2012 Aug; 56(7):880-9. PubMed ID: 22404496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals.
    Nguyen-Ky T; Wen PP; Li Y
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1488-98. PubMed ID: 23314762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence EEG pattern classification in sevoflurane anesthesia.
    Liang Z; Huang C; Li Y; Hight DF; Voss LJ; Sleigh JW; Li X; Bai Y
    Physiol Meas; 2018 Apr; 39(4):045006. PubMed ID: 29513276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomap approach to EEG-based assessment of neurophysiological changes during anesthesia.
    Kortelainen J; Vayrynen E; Seppanen T
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):113-20. PubMed ID: 21147597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of depth of anesthesia with Hilbert-Huang spectral entropy.
    Li X; Li D; Liang Z; Voss LJ; Sleigh JW
    Clin Neurophysiol; 2008 Nov; 119(11):2465-75. PubMed ID: 18812265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification.
    Li F; Fan Y; Zhang X; Wang C; Hu F; Jia W; Hui H
    J Med Syst; 2019 Dec; 44(2):39. PubMed ID: 31865469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG entropy measures in anesthesia.
    Liang Z; Wang Y; Sun X; Li D; Voss LJ; Sleigh JW; Hagihira S; Li X
    Front Comput Neurosci; 2015; 9():16. PubMed ID: 25741277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved spectrum analysis in EEG for measure of depth of anesthesia based on phase-rectified signal averaging.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Physiol Meas; 2017 Feb; 38(2):116-138. PubMed ID: 28033111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.