BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28574447)

  • 1. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography.
    Bourgeois D
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging.
    Ha T; Tinnefeld P
    Annu Rev Phys Chem; 2012; 63():595-617. PubMed ID: 22404588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for reversible photobleaching of a green fluorescent protein homologue.
    Henderson JN; Ai HW; Campbell RE; Remington SJ
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6672-7. PubMed ID: 17420458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein.
    Kao YT; Zhu X; Min W
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3220-5. PubMed ID: 22328153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity.
    Ruhlandt D; Andresen M; Jensen N; Gregor I; Jakobs S; Enderlein J; Chizhik AI
    Commun Biol; 2020 Oct; 3(1):627. PubMed ID: 33128009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein.
    Megley CM; Dickson LA; Maddalo SL; Chandler GJ; Zimmer M
    J Phys Chem B; 2009 Jan; 113(1):302-8. PubMed ID: 19067572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DiB-splits: nature-guided design of a novel fluorescent labeling split system.
    Bozhanova NG; Gavrikov AS; Mishin AS; Meiler J
    Sci Rep; 2020 Jul; 10(1):11049. PubMed ID: 32632329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bright and photostable photoconvertible fluorescent protein.
    McKinney SA; Murphy CS; Hazelwood KL; Davidson MW; Looger LL
    Nat Methods; 2009 Feb; 6(2):131-3. PubMed ID: 19169260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mechanism of the reversible photoswitch of a fluorescent protein.
    Andresen M; Wahl MC; Stiel AC; Gräter F; Schäfer LV; Trowitzsch S; Weber G; Eggeling C; Grubmüller H; Hell SW; Jakobs S
    Proc Natl Acad Sci U S A; 2005 Sep; 102(37):13070-4. PubMed ID: 16135569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties.
    Maity A; Wulffelé J; Ayala I; Favier A; Adam V; Bourgeois D; Brutscher B
    Adv Sci (Weinh); 2024 Mar; 11(10):e2306272. PubMed ID: 38146132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orange fluorescent proteins: structural studies of LSSmOrange, PSmOrange and PSmOrange2.
    Pletnev S; Shcherbakova DM; Subach OM; Pletneva NV; Malashkevich VN; Almo SC; Dauter Z; Verkhusha VV
    PLoS One; 2014; 9(6):e99136. PubMed ID: 24960050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mApple as a Red Fluorescent Protein for Cryogenic Single-Molecule Imaging with Turn-Off and Turn-On Active Control Mechanisms.
    Sartor AM; Dahlberg PD; Perez D; Moerner WE
    J Phys Chem B; 2023 Mar; 127(12):2690-2700. PubMed ID: 36943356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directionality of light absorption and emission in representative fluorescent proteins.
    Myšková J; Rybakova O; Brynda J; Khoroshyy P; Bondar A; Lazar J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32395-32401. PubMed ID: 33273123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins.
    Drobizhev M; Hughes TE; Stepanenko Y; Wnuk P; O'Donnell K; Scott JN; Callis PR; Mikhaylov A; Dokken L; Rebane A
    Sci Rep; 2012; 2():688. PubMed ID: 23008753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically encoded fluorescent tags.
    Thorn K
    Mol Biol Cell; 2017 Apr; 28(7):848-857. PubMed ID: 28360214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions.
    Kaufmann R; Schellenberger P; Seiradake E; Dobbie IM; Jones EY; Davis I; Hagen C; Grünewald K
    Nano Lett; 2014 Jul; 14(7):4171-5. PubMed ID: 24884378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media.
    Baddeley D; Jayasinghe I; Cremer C; Cannell MB; Soeller C
    Biophys J; 2009 Jan; 96(2):L22-4. PubMed ID: 19167284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lumos maxima - How robust fluorophores resist photobleaching?
    Zhang Y; Ling J; Liu T; Chen Z
    Curr Opin Chem Biol; 2024 Apr; 79():102439. PubMed ID: 38432145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein.
    Warner KD; Chen MC; Song W; Strack RL; Thorn A; Jaffrey SR; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2014 Aug; 21(8):658-63. PubMed ID: 25026079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of the bright monomeric yellow-green fluorescent protein mNeonGreen obtained by directed evolution.
    Clavel D; Gotthard G; von Stetten D; De Sanctis D; Pasquier H; Lambert GG; Shaner NC; Royant A
    Acta Crystallogr D Struct Biol; 2016 Dec; 72(Pt 12):1298-1307. PubMed ID: 27917830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.