These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28574461)

  • 41. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
    Candoni N; Grossier R; Lagaize M; Veesler S
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():59-83. PubMed ID: 31018097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Small-volume
    Khan NF; Salim M; Binte Abu Bakar SY; Ristroph K; Prud'homme RK; Hawley A; Boyd BJ; Clulow AJ
    Int J Pharm X; 2022 Dec; 4():100113. PubMed ID: 35243327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of tools to automate quantitative analysis of radiation damage in SAXS experiments.
    Brooks-Bartlett JC; Batters RA; Bury CS; Lowe ED; Ginn HM; Round A; Garman EF
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):63-72. PubMed ID: 28009547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imitating Musical Scores on a Chip Through Droplet Generation.
    Yang XS; Shin S; Lee WS; Hong JW
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6318-21. PubMed ID: 27427710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence detection methods for microfluidic droplet platforms.
    Casadevall i Solvas X; Niu X; Leeper K; Cho S; Chang SI; Edel JB; deMello AJ
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems.
    Saldanha O; Graceffa R; Hémonnot CYJ; Ranke C; Brehm G; Liebi M; Marmiroli B; Weinhausen B; Burghammer M; Köster S
    Chemphyschem; 2017 May; 18(10):1220-1223. PubMed ID: 28295928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards an active droplet-based microfluidic platform for programmable fluid handling.
    Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A
    Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-throughput SAXS for the characterization of biomolecules in solution: a practical approach.
    Dyer KN; Hammel M; Rambo RP; Tsutakawa SE; Rodic I; Classen S; Tainer JA; Hura GL
    Methods Mol Biol; 2014; 1091():245-58. PubMed ID: 24203338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
    Ryu J; Kim J; Han KH
    Lab Chip; 2023 Mar; 23(7):1896-1904. PubMed ID: 36877075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals.
    Wang JW; Gao J; Wang HF; Jin QH; Rao B; Deng W; Cao Y; Lei M; Ye S; Fang Q
    Anal Chem; 2019 Aug; 91(15):10132-10140. PubMed ID: 31276402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size and structure of hexanuclear plutonium oxo-hydroxo clusters in aqueous solution from synchrotron analysis.
    Dumas T; Virot M; Menut D; Tamain C; Micheau C; Dourdain S; Diat O
    J Synchrotron Radiat; 2022 Jan; 29(Pt 1):30-36. PubMed ID: 34985420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.
    Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR
    Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction.
    Junius N; Jaho S; Sallaz-Damaz Y; Borel F; Salmon JB; Budayova-Spano M
    Lab Chip; 2020 Jan; 20(2):296-310. PubMed ID: 31804643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel in situ sample environment setup for combined small angle x-ray scattering (SAXS), wide-angle x-ray scattering (WAXS), and Fourier transform infrared spectrometer (FTIR) simultaneous measurement.
    Liu Y; Tian F; Zhou P; Zhu H; Zhong J; Chen M; Li X; Huang Y; Ma J; Bian F
    Rev Sci Instrum; 2023 Mar; 94(3):033103. PubMed ID: 37012802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations.
    Zhang F; Richter G; Bourgeois B; Spreitzer E; Moser A; Keilbach A; Kotnik P; Madl T
    Pharmaceutics; 2021 Dec; 14(1):. PubMed ID: 35056965
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.
    Yesiloz G; Boybay MS; Ren CL
    Lab Chip; 2015 Oct; 15(20):4008-19. PubMed ID: 26351007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uranium(VI) On-Chip Microliter Concentration Measurements in a Highly Extended UV-Visible Absorbance Linearity Range.
    Rodríguez-Ruiz I; Lamadie F; Charton S
    Anal Chem; 2018 Feb; 90(4):2456-2460. PubMed ID: 29327582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system.
    Classen S; Rodic I; Holton J; Hura GL; Hammel M; Tainer JA
    J Synchrotron Radiat; 2010 Nov; 17(6):774-81. PubMed ID: 20975223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.