BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28574606)

  • 21. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation.
    Chen HF; Lan CY
    PLoS One; 2015; 10(6):e0129903. PubMed ID: 26087243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids.
    Danhof HA; Vylkova S; Vesely EM; Ford AE; Gonzalez-Garay M; Lorenz MC
    mBio; 2016 Nov; 7(6):. PubMed ID: 27935835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans.
    Huang X; Chen X; He Y; Yu X; Li S; Gao N; Niu L; Mao Y; Wang Y; Wu X; Wu W; Wu J; Zhou D; Zhan X; Chen C
    PLoS Pathog; 2017 Jun; 13(6):e1006414. PubMed ID: 28570675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.
    Komalapriya C; Kaloriti D; Tillmann AT; Yin Z; Herrero-de-Dios C; Jacobsen MD; Belmonte RC; Cameron G; Haynes K; Grebogi C; de Moura AP; Gow NA; Thiel M; Quinn J; Brown AJ; Romano MC
    PLoS One; 2015; 10(9):e0137750. PubMed ID: 26368573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans.
    Alonso-Monge R; Navarro-García F; Román E; Negredo AI; Eisman B; Nombela C; Pla J
    Eukaryot Cell; 2003 Apr; 2(2):351-61. PubMed ID: 12684384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking Sfl1 Regulation of Hyphal Development to Stress Response Kinases in Candida albicans.
    Unoje O; Yang M; Lu Y; Su C; Liu H
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31941808
    [No Abstract]   [Full Text] [Related]  

  • 27. Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris.
    Day AM; McNiff MM; da Silva Dantas A; Gow NAR; Quinn J
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355673
    [No Abstract]   [Full Text] [Related]  

  • 28. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape.
    Patterson MJ; McKenzie CG; Smith DA; da Silva Dantas A; Sherston S; Veal EA; Morgan BA; MacCallum DM; Erwig LP; Quinn J
    Antioxid Redox Signal; 2013 Dec; 19(18):2244-60. PubMed ID: 23706023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.
    Kaloriti D; Jacobsen M; Yin Z; Patterson M; Tillmann A; Smith DA; Cook E; You T; Grimm MJ; Bohovych I; Grebogi C; Segal BH; Gow NA; Haynes K; Quinn J; Brown AJ
    mBio; 2014 Jul; 5(4):e01334-14. PubMed ID: 25028425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of
    Chew SY; Ho KL; Cheah YK; Sandai D; Brown AJP; Than LTL
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis.
    Ikeh MA; Kastora SL; Day AM; Herrero-de-Dios CM; Tarrant E; Waldron KJ; Banks AP; Bain JM; Lydall D; Veal EA; MacCallum DM; Erwig LP; Brown AJ; Quinn J
    Mol Biol Cell; 2016 Sep; 27(17):2784-801. PubMed ID: 27385340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.
    Mayer FL; Wilson D; Jacobsen ID; Miramón P; Slesiona S; Bohovych IM; Brown AJ; Hube B
    PLoS One; 2012; 7(6):e38584. PubMed ID: 22685587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.
    Vylkova S; Carman AJ; Danhof HA; Collette JR; Zhou H; Lorenz MC
    mBio; 2011; 2(3):e00055-11. PubMed ID: 21586647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality.
    Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP
    PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity.
    Lok B; Adam MAA; Kamal LZM; Chukwudi NA; Sandai R; Sandai D
    Med Mycol; 2021 Feb; 59(2):115-125. PubMed ID: 32944760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Transcriptional Response of
    Cottier F; Tan ASM; Yurieva M; Liao W; Lum J; Poidinger M; Zolezzi F; Pavelka N
    G3 (Bethesda); 2017 Nov; 7(11):3597-3604. PubMed ID: 28877970
    [No Abstract]   [Full Text] [Related]  

  • 37. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans.
    Eisman B; Alonso-Monge R; Román E; Arana D; Nombela C; Pla J
    Eukaryot Cell; 2006 Feb; 5(2):347-58. PubMed ID: 16467475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p.
    Zhang X; De Micheli M; Coleman ST; Sanglard D; Moye-Rowley WS
    Mol Microbiol; 2000 May; 36(3):618-29. PubMed ID: 10844651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic diversity of stress signalling pathways in fungi.
    Nikolaou E; Agrafioti I; Stumpf M; Quinn J; Stansfield I; Brown AJ
    BMC Evol Biol; 2009 Feb; 9():44. PubMed ID: 19232129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1.
    Mogavero S; Tavanti A; Senesi S; Rogers PD; Morschhäuser J
    Antimicrob Agents Chemother; 2011 May; 55(5):2061-6. PubMed ID: 21343453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.