These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28574606)

  • 61. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.
    Li X; Du W; Zhao J; Zhang L; Zhu Z; Jiang L
    FEMS Yeast Res; 2010 Jun; 10(4):441-51. PubMed ID: 20402792
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antifungal activity of fused Mannich ketones triggers an oxidative stress response and is Cap1-dependent in Candida albicans.
    Rossignol T; Kocsis B; Bouquet O; Kustos I; Kilár F; Nyul A; Jakus PB; Rajbhandari K; Prókai L; d'Enfert C; Lóránd T
    PLoS One; 2013; 8(4):e62142. PubMed ID: 23646117
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adaptation of
    Chebaro Y; Lorenz M; Fa A; Zheng R; Gustin M
    Genetics; 2017 May; 206(1):151-162. PubMed ID: 28235888
    [No Abstract]   [Full Text] [Related]  

  • 64. Zcf24, a zinc-finger transcription factor, is required for lactate catabolism and inhibits commensalism in Candida albicans.
    Sun Q; Dong B; Yang D; Yu J; Ren T; Wang T; Yang L; Lu Y; Su C
    Mol Microbiol; 2023 Jan; 119(1):112-125. PubMed ID: 36545847
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection.
    Larcombe DE; Bohovych IM; Pradhan A; Ma Q; Hickey E; Leaves I; Cameron G; Avelar GM; de Assis LJ; Childers DS; Bain JM; Lagree K; Mitchell AP; Netea MG; Erwig LP; Gow NAR; Brown AJP
    PLoS Pathog; 2023 Jul; 19(7):e1011505. PubMed ID: 37428810
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene.
    Martchenko M; Alarco AM; Harcus D; Whiteway M
    Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteomic analysis of the oxidative stress response in Candida albicans.
    Kusch H; Engelmann S; Albrecht D; Morschhäuser J; Hecker M
    Proteomics; 2007 Mar; 7(5):686-97. PubMed ID: 17285563
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans.
    Lane S; Birse C; Zhou S; Matson R; Liu H
    J Biol Chem; 2001 Dec; 276(52):48988-96. PubMed ID: 11595734
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Rbf1, Hfl1 and Dbp4 of Candida albicans regulate common as well as transcription factor-specific mitochondrial and other cell activities.
    Khamooshi K; Sikorski P; Sun N; Calderone R; Li D
    BMC Genomics; 2014 Jan; 15():56. PubMed ID: 24450762
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen,
    Giuraniuc CV; Parkin C; Almeida MC; Fricker M; Shadmani P; Nye S; Wehmeier S; Chawla S; Bedekovic T; Lehtovirta-Morley L; Richards DM; Gow NA; Brand AC
    mBio; 2023 Oct; 14(5):e0115723. PubMed ID: 37750683
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans.
    Kunze D; Melzer I; Bennett D; Sanglard D; MacCallum D; Nörskau J; Coleman DC; Odds FC; Schäfer W; Hube B
    Microbiology (Reading); 2005 Oct; 151(Pt 10):3381-3394. PubMed ID: 16207920
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Roles of Edc3 in the oxidative stress response and CaMCA1-encoded metacaspase expression in Candida albicans.
    Jung JH; Kim J
    FEBS J; 2014 Nov; 281(21):4841-51. PubMed ID: 25158786
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The adaptive response to alternative carbon sources in the pathogen Candida albicans involves a remodeling of thiol- and glutathione-dependent redox status.
    Bayot J; Martin C; Chevreux G; Camadro JM; Auchère F
    Biochem J; 2023 Feb; 480(3):197-217. PubMed ID: 36625375
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans.
    Caplan T; Polvi EJ; Xie JL; Buckhalter S; Leach MD; Robbins N; Cowen LE
    Cell Rep; 2018 May; 23(8):2292-2298. PubMed ID: 29791841
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation.
    Tao L; Du H; Guan G; Dai Y; Nobile CJ; Liang W; Cao C; Zhang Q; Zhong J; Huang G
    PLoS Biol; 2014 Apr; 12(4):e1001830. PubMed ID: 24691005
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction.
    Gil-Bona A; Parra-Giraldo CM; Hernáez ML; Reales-Calderon JA; Solis NV; Filler SG; Monteoliva L; Gil C
    J Proteomics; 2015 Sep; 127(Pt B):340-351. PubMed ID: 26087349
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion.
    Mottola A; Schwanfelder S; Morschhäuser J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817381
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans.
    Bahn YS; Molenda M; Staab JF; Lyman CA; Gordon LJ; Sundstrom P
    Eukaryot Cell; 2007 Dec; 6(12):2376-90. PubMed ID: 17951520
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of yeast growth conditions on yeast-mycelial transition in Candida albicans.
    Bell WM; Chaffin WL
    Mycopathologia; 1983 Dec; 84(1):41-4. PubMed ID: 6369144
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in
    Padder SA; Ramzan A; Tahir I; Rehman RU; Shah AH
    Crit Rev Microbiol; 2022 Feb; 48(1):1-20. PubMed ID: 34213983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.