BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28574746)

  • 1. Microbial production of mevalonate by recombinant Escherichia coli using acetic acid as a carbon source.
    Xu X; Xie M; Zhao Q; Xian M; Liu H
    Bioengineered; 2018 Jan; 9(1):116-123. PubMed ID: 28574746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process development of succinic acid production by Escherichia coli NZN111 using acetate as an aerobic carbon source.
    Liu Y; Wu H; Li Q; Tang X; Li Z; Ye Q
    Enzyme Microb Technol; 2011 Oct; 49(5):459-64. PubMed ID: 22112618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production.
    Li L; Wang X; Li X; Shi H; Wang F; Zhang Y; Li X
    J Agric Food Chem; 2019 Jun; 67(23):6523-6531. PubMed ID: 31117507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.
    Kim YS; Lee JH; Kim NH; Yeom SJ; Kim SW; Oh DK
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):489-97. PubMed ID: 21246354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.
    Li Q; Huang B; Wu H; Li Z; Ye Q
    Bioresour Technol; 2017 May; 231():75-84. PubMed ID: 28196782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Escherichia coli to convert acetic acid to β-caryophyllene.
    Yang J; Nie Q
    Microb Cell Fact; 2016 May; 15():74. PubMed ID: 27149950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli.
    Wang Y; Xian M; Feng X; Liu M; Zhao G
    Bioengineered; 2018; 9(1):233-241. PubMed ID: 29865993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Butyrate production under aerobic growth conditions by engineered Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Yakushi T; Matsushita K
    J Biosci Bioeng; 2017 May; 123(5):562-568. PubMed ID: 28089378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of mevalonate by a metabolically-engineered Escherichia coli.
    Tabata K; Hashimoto S
    Biotechnol Lett; 2004 Oct; 26(19):1487-91. PubMed ID: 15604784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production.
    Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Optimization of Limonene Production in Engineered Escherichia coli.
    Wu J; Cheng S; Cao J; Qiao J; Zhao GR
    J Agric Food Chem; 2019 Jun; 67(25):7087-7097. PubMed ID: 31199132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Fucose production by engineered Escherichia coli.
    Liu JJ; Lee JW; Yun EJ; Jung SM; Seo JH; Jin YS
    Biotechnol Bioeng; 2019 Apr; 116(4):904-911. PubMed ID: 30597526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Production of Isoprene and Lactate by Engineered
    Cheng T; Liang X; Wang Y; Chen N; Feng D; Liang F; Xie C; Liu T; Zou H
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.