BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28574786)

  • 1. Temperature and Embryonic Development in Relation to Spawning and Field Occurrence of Larvae of Three Antarctic Echinoderms.
    Stanwell-Smith D; Peck LS
    Biol Bull; 1998 Feb; 194(1):44-52. PubMed ID: 28574786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species.
    Lamare MD; Barker MF; Lesser MP; Marshall C
    J Exp Biol; 2006 Dec; 209(Pt 24):5017-28. PubMed ID: 17142690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Metabolism and Amino Acid Transport During Early Development of Antarctic and Temperate Echinoderms.
    Shilling FM; Manahan DT
    Biol Bull; 1994 Dec; 187(3):398-407. PubMed ID: 29281399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.
    Karelitz SE; Uthicke S; Foo SA; Barker MF; Byrne M; Pecorino D; Lamare MD
    Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DEVELOPMENT, METAMORPHOSIS, AND SEASONAL ABUNDANCE OF EMBRYOS AND LARVAE OF THE ANTARCTIC SEA URCHIN STERECHINUS NEUMAYERI.
    Bosch I; Beauchamp KA; Steele ME; Pearse JS
    Biol Bull; 1987 Aug; 173(1):126-135. PubMed ID: 29314987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.
    Ho MA; Price C; King CK; Virtue P; Byrne M
    Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome complexity and repetitive DNA in metazoans from extreme marine environments.
    Fielman KT; Marsh AG
    Gene; 2005 Dec; 362():98-108. PubMed ID: 16188403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, Temperature Tolerance, and Settlement Preference of Embryos and Larvae of the Articulate Brachiopod Laqueus californianus.
    Pennington JT; Tamburri MN; Barry JP
    Biol Bull; 1999 Jun; 196(3):245-256. PubMed ID: 28296489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Juveniles Are More Resistant to Warming than Adults in 4 Species of Antarctic Marine Invertebrates.
    Peck LS; Souster T; Clark MS
    PLoS One; 2013; 8(6):e66033. PubMed ID: 23840393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology.
    Dilly GF; Gaitán-Espitia JD; Hofmann GE
    Mol Ecol Resour; 2015 Mar; 15(2):425-36. PubMed ID: 25143045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.
    Lister KN; Lamare MD; Burritt DJ
    J Exp Biol; 2010 Jun; 213(11):1967-75. PubMed ID: 20472784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARE MITOCHONDRIA SUBJECT TO EVOLUTIONARY TEMPERATURE ADAPTATION?
    Johnston I; Guderley H; Franklin C; Crockford T; Kamunde C
    J Exp Biol; 1994 Oct; 195(1):293-306. PubMed ID: 9317834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of embryo energy, egg size, and larval food supply on the development of asteroid echinoderms.
    Trackenberg SN; Richardson EL; Allen JD
    Ecol Evol; 2020 Jul; 10(14):7839-7850. PubMed ID: 32760568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Starvation and chemoreception in Antarctic benthic invertebrates].
    Rakusa-Suszczewski S; Janecki T; Domanov MM
    Izv Akad Nauk Ser Biol; 2010; (1):68-75. PubMed ID: 20235431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antarctic Asteroid Odontaster validus: Constancy of Reproductive Periodicities.
    Pearse JS
    Science; 1966 Jun; 152(3730):1763-4. PubMed ID: 17757799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary adaptation of contractile performance in muscle of ectothermic winter-flying moths.
    Marden J
    J Exp Biol; 1995; 198(Pt 10):2087-94. PubMed ID: 9319999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.
    Christiansen-Jucht CD; Parham PE; Saddler A; Koella JC; Basáñez MG
    Parasit Vectors; 2015 Sep; 8():456. PubMed ID: 26382035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.