These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28574793)

  • 1. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies.
    Daniszewski M; Crombie DE; Henderson R; Liang HH; Wong RCB; Hewitt AW; Pébay A
    SLAS Technol; 2018 Aug; 23(4):315-325. PubMed ID: 28574793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.
    Talkhabi M; Aghdami N; Baharvand H
    Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.
    Konagaya S; Ando T; Yamauchi T; Suemori H; Iwata H
    Sci Rep; 2015 Nov; 5():16647. PubMed ID: 26573336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells.
    Qian T; Shusta EV; Palecek SP
    Curr Opin Genet Dev; 2015 Oct; 34():54-60. PubMed ID: 26313850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems.
    Badenes SM; Fernandes TG; Rodrigues CAV; Diogo MM; Cabral JMS
    J Biotechnol; 2016 Sep; 234():71-82. PubMed ID: 27480342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Closed-System Expansion of Pluripotent Stem Cell Aggregates in a Rocking-Motion Bioreactor.
    Davis BM; Loghin ER; Conway KR; Zhang X
    SLAS Technol; 2018 Aug; 23(4):364-373. PubMed ID: 29481762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automation of Organoid Cultures: Current Protocols and Applications.
    Louey A; Hernández D; Pébay A; Daniszewski M
    SLAS Discov; 2021 Oct; 26(9):1138-1147. PubMed ID: 34167363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated human induced pluripotent stem cell colony segmentation for use in cell culture automation applications.
    Powell KA; Bohrer LR; Stone NE; Hittle B; Anfinson KR; Luangphakdy V; Muschler G; Mullins RF; Stone EM; Tucker BA
    SLAS Technol; 2023 Dec; 28(6):416-422. PubMed ID: 37454765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregate and Microcarrier Cultures of Human Pluripotent Stem Cells in Stirred-Suspension Systems.
    Ashok P; Fan Y; Rostami MR; Tzanakakis ES
    Methods Mol Biol; 2016; 1502():35-52. PubMed ID: 26659793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suspension culture of undifferentiated human pluripotent stem cells using spinner flasks.
    Chen VC; Couture LA
    Methods Mol Biol; 2015; 1283():13-21. PubMed ID: 25537838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets.
    Bose B; Sudheer PS
    Methods Mol Biol; 2016; 1341():257-84. PubMed ID: 25783769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Protocol for the Generation of Cardiomyocytes from Human Pluripotent Stem Cells.
    Sequiera GL; Mehta A; Shim W
    Methods Mol Biol; 2016; 1307():379-83. PubMed ID: 24297314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Expansion of Dissociated Human Pluripotent Stem Cells Using a Synthetic Substrate.
    Kawase E
    Methods Mol Biol; 2016; 1307():61-9. PubMed ID: 24875248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask.
    Want AJ; Nienow AW; Hewitt CJ; Coopman K
    Regen Med; 2012 Jan; 7(1):71-84. PubMed ID: 22168499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic systems: a new toolbox for pluripotent stem cells.
    Lesher-Perez SC; Frampton JP; Takayama S
    Biotechnol J; 2013 Feb; 8(2):180-91. PubMed ID: 23125055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile, fully automated, microfluidic cell culture system.
    Gómez-Sjöberg R; Leyrat AA; Pirone DM; Chen CS; Quake SR
    Anal Chem; 2007 Nov; 79(22):8557-63. PubMed ID: 17953452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture, Adaptation, and Expansion of Pluripotent Stem Cells.
    Brehm JL; Ludwig TE
    Methods Mol Biol; 2017; 1590():139-150. PubMed ID: 28353267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.
    Yan Y; Song L; Tsai AC; Ma T; Li Y
    Methods Mol Biol; 2016; 1502():119-28. PubMed ID: 26837215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.
    Kamei KI; Koyama Y; Tokunaga Y; Mashimo Y; Yoshioka M; Fockenberg C; Mosbergen R; Korn O; Wells C; Chen Y
    Adv Healthc Mater; 2016 Nov; 5(22):2951-2958. PubMed ID: 27775225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture.
    Vosough M; Omidinia E; Kadivar M; Shokrgozar MA; Pournasr B; Aghdami N; Baharvand H
    Stem Cells Dev; 2013 Oct; 22(20):2693-705. PubMed ID: 23731381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.