BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28575147)

  • 1. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NETWORK-BASED GENOME WIDE STUDY OF HIPPOCAMPAL IMAGING PHENOTYPE IN ALZHEIMER'S DISEASE TO IDENTIFY FUNCTIONAL INTERACTION MODULES.
    Yao X; Yan J; Risacher S; Moore J; Saykin A; Shen L
    Proc IEEE Int Conf Acoust Speech Signal Process; 2017; 2017():6170-6174. PubMed ID: 28989328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network.
    Liu Y; Brossard M; Roqueiro D; Margaritte-Jeannin P; Sarnowski C; Bouzigon E; Demenais F
    Bioinformatics; 2017 May; 33(10):1536-1544. PubMed ID: 28069594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease.
    Li J; Chen F; Zhang Q; Meng X; Yao X; Risacher SL; Yan J; Saykin AJ; Liang H; Shen L;
    Curr Alzheimer Res; 2019; 16(13):1163-1174. PubMed ID: 31755389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying genetic markers enriched by brain imaging endophenotypes in Alzheimer's disease.
    Kim M; Wu R; Yao X; Saykin AJ; Moore JH; Shen L;
    BMC Med Genomics; 2022 Aug; 15(Suppl 2):168. PubMed ID: 35915443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease.
    Meng X; Li J; Zhang Q; Chen F; Bian C; Yao X; Yan J; Xu Z; Risacher SL; Saykin AJ; Liang H; Shen L;
    BMC Genomics; 2020 Dec; 21(Suppl 11):896. PubMed ID: 33372590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis.
    Hao X; Li C; Yan J; Yao X; Risacher SL; Saykin AJ; Shen L; Zhang D;
    Bioinformatics; 2017 Jul; 33(14):i341-i349. PubMed ID: 28881979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort.
    Cong W; Meng X; Li J; Zhang Q; Chen F; Liu W; Wang Y; Cheng S; Yao X; Yan J; Kim S; Saykin AJ; Liang H; Shen L;
    BMC Genomics; 2017 May; 18(1):421. PubMed ID: 28558704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for multi-SNP GWAS and its application in Alzheimer's disease.
    Bodily PM; Fujimoto MS; Page JT; Clement MJ; Ebbert MT; Ridge PG;
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):268. PubMed ID: 27453991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks.
    Jia P; Zheng S; Long J; Zheng W; Zhao Z
    Bioinformatics; 2011 Jan; 27(1):95-102. PubMed ID: 21045073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer's disease.
    Squillario M; Abate G; Tomasi F; Tozzo V; Barla A; Uberti D;
    Sci Rep; 2020 Jul; 10(1):12063. PubMed ID: 32694537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics strategy to advance the interpretation of Alzheimer's disease GWAS discoveries: The roads from association to causation.
    Lutz MW; Sprague D; Chiba-Falek O
    Alzheimers Dement; 2019 Aug; 15(8):1048-1058. PubMed ID: 31262699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional imaging genetic enrichment analysis.
    Yao X; Cong S; Yan J; Risacher SL; Saykin AJ; Moore JH; Shen L; ;
    Bioinformatics; 2020 Apr; 36(8):2554-2560. PubMed ID: 31860065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies.
    Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M
    Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network-based approach to prioritize results from genome-wide association studies.
    Akula N; Baranova A; Seto D; Solka J; Nalls MA; Singleton A; Ferrucci L; Tanaka T; Bandinelli S; Cho YS; Kim YJ; Lee JY; Han BG; ; ; McMahon FJ
    PLoS One; 2011; 6(9):e24220. PubMed ID: 21915301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NetCore: a network propagation approach using node coreness.
    Barel G; Herwig R
    Nucleic Acids Res; 2020 Sep; 48(17):e98. PubMed ID: 32735660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
    Zhou T; Thung KH; Liu M; Shen D
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):165-175. PubMed ID: 29993426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.