BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28575236)

  • 21. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway.
    Daviet S; Couvé-Privat S; Gros L; Shinozuka K; Ide H; Saparbaev M; Ishchenko AA
    DNA Repair (Amst); 2007 Jan; 6(1):8-18. PubMed ID: 16978929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp.
    Hwang BJ; Jin J; Gao Y; Shi G; Madabushi A; Yan A; Guan X; Zalzman M; Nakajima S; Lan L; Lu AL
    BMC Mol Biol; 2015 Jun; 16():12. PubMed ID: 26063178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Base excision repair activities differ in human lung cancer cells and corresponding normal controls.
    Karahalil B; Bohr VA; De Souza-Pinto NC
    Anticancer Res; 2010 Dec; 30(12):4963-71. PubMed ID: 21187477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of switching among multiple BER pathways.
    Dogliotti E; Fortini P; Pascucci B; Parlanti E
    Prog Nucleic Acid Res Mol Biol; 2001; 68():3-27. PubMed ID: 11554307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach utilizing real-time qPCR to detect in vitro base excision repair.
    Zhang H; Zang Y; Sun Y; Jin R; Wu H; Wang M; Li N; Chen D
    DNA Repair (Amst); 2010 Aug; 9(8):898-906. PubMed ID: 20634149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes.
    Hegde ML; Izumi T; Mitra S
    Prog Mol Biol Transl Sci; 2012; 110():123-53. PubMed ID: 22749145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Impact of Human DNA Glycosylases on the Activity of DNA Polymerase β toward Various Base Excision Repair Intermediates.
    Bakman AS; Boichenko SS; Kuznetsova AA; Ishchenko AA; Saparbaev M; Kuznetsov NA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases.
    Hegde ML; Mantha AK; Hazra TK; Bhakat KK; Mitra S; Szczesny B
    Mech Ageing Dev; 2012 Apr; 133(4):157-68. PubMed ID: 22313689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative characterization of protein-protein complexes involved in base excision DNA repair.
    Moor NA; Vasil'eva IA; Anarbaev RO; Antson AA; Lavrik OI
    Nucleic Acids Res; 2015 Jul; 43(12):6009-22. PubMed ID: 26013813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair.
    Vasil'eva IA; Moor NA; Lavrik OI
    Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanism of PCNA-dependent base excision repair.
    Matsumoto Y
    Prog Nucleic Acid Res Mol Biol; 2001; 68():129-38. PubMed ID: 11554292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways.
    Redrejo-Rodríguez M; Saint-Pierre C; Couve S; Mazouzi A; Ishchenko AA; Gasparutto D; Saparbaev M
    PLoS One; 2011; 6(7):e21039. PubMed ID: 21799731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair.
    Campalans A; Marsin S; Nakabeppu Y; O'connor TR; Boiteux S; Radicella JP
    DNA Repair (Amst); 2005 Jul; 4(7):826-35. PubMed ID: 15927541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TRIM26 Maintains Cell Survival in Response to Oxidative Stress through Regulating DNA Glycosylase Stability.
    Konis SMR; Hughes JR; Parsons JL
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray repair cross complementing protein 1 in base excision repair.
    Hanssen-Bauer A; Solvang-Garten K; Akbari M; Otterlei M
    Int J Mol Sci; 2012 Dec; 13(12):17210-29. PubMed ID: 23247283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2.
    Dou H; Mitra S; Hazra TK
    J Biol Chem; 2003 Dec; 278(50):49679-84. PubMed ID: 14522990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.
    Hegde PM; Dutta A; Sengupta S; Mitra J; Adhikari S; Tomkinson AE; Li GM; Boldogh I; Hazra TK; Mitra S; Hegde ML
    J Biol Chem; 2015 Aug; 290(34):20919-20933. PubMed ID: 26134572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.