BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28575641)

  • 21. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses.
    Zhang M; Shen Z; Meng G; Lu Y; Wang Y
    PLoS One; 2017; 12(12):e0189187. PubMed ID: 29216330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses.
    Song J; Henry HAL; Tian L
    Plant Sci; 2019 Jun; 283():355-365. PubMed ID: 31128706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9.
    Wang L; Hu W; Sun J; Liang X; Yang X; Wei S; Wang X; Zhou Y; Xiao Q; Yang G; He G
    Plant Sci; 2015 Aug; 237():33-45. PubMed ID: 26089150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide exploration of the molecular evolution and regulatory network of mitogen-activated protein kinase cascades upon multiple stresses in Brachypodium distachyon.
    Jiang M; Wen F; Cao J; Li P; She J; Chu Z
    BMC Genomics; 2015 Mar; 16(1):228. PubMed ID: 25886731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three Fatty Acyl-Coenzyme A Reductases, BdFAR1, BdFAR2 and BdFAR3, are Involved in Cuticular Wax Primary Alcohol Biosynthesis in Brachypodium distachyon.
    Wang Y; Sun Y; You Q; Luo W; Wang C; Zhao S; Chai G; Li T; Shi X; Li C; Jetter R; Wang Z
    Plant Cell Physiol; 2018 Mar; 59(3):527-543. PubMed ID: 29329458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and in Silico Characterization of GT Factors Involved in Phytohormone and Abiotic Stresses Responses in
    Wen F; Xu L; Xie Y; Liao L; Li T; Jia M; Liu X; Wu X
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon.
    Kang H; Zhang M; Zhou S; Guo Q; Chen F; Wu J; Wang W
    Plant Sci; 2016 Jul; 248():102-15. PubMed ID: 27181952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon.
    Wei B; Zhang RZ; Guo JJ; Liu DM; Li AL; Fan RC; Mao L; Zhang XQ
    PLoS One; 2014; 9(1):e84781. PubMed ID: 24454749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-Wide Analysis and Expression Profiles of the MYB Genes in Brachypodium distachyon.
    Chen S; Niu X; Guan Y; Li H
    Plant Cell Physiol; 2017 Oct; 58(10):1777-1788. PubMed ID: 29016897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon.
    Cao J; Jiang M; Li P; Chu Z
    BMC Genomics; 2016 Mar; 17():175. PubMed ID: 26935448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural variation of drought response in Brachypodium distachyon.
    Luo N; Liu J; Yu X; Jiang Y
    Physiol Plant; 2011 Jan; 141(1):19-29. PubMed ID: 20875057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific peroxidases differentiate Brachypodium distachyon accessions and are associated with drought tolerance traits.
    Luo N; Yu X; Nie G; Liu J; Jiang Y
    Ann Bot; 2016 Aug; 118(2):259-70. PubMed ID: 27325900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon.
    Liu X; Chu Z
    BMC Genomics; 2015 Mar; 16(1):227. PubMed ID: 25887221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic and expression analysis of histone acetyltransferases in Brachypodium distachyon.
    Tan S; Gao L; Li T; Chen L
    Genomics; 2019 Dec; 111(6):1966-1976. PubMed ID: 30641128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1.
    Niu X; Chen S; Li J; Liu Y; Ji W; Li H
    BMC Genomics; 2019 Aug; 20(1):635. PubMed ID: 31387534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.
    Priest HD; Fox SE; Rowley ER; Murray JR; Michael TP; Mockler TC
    PLoS One; 2014; 9(1):e87499. PubMed ID: 24489928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.
    Tatli O; Sogutmaz Ozdemir B; Dinler Doganay G
    Plant Mol Biol; 2017 Aug; 94(6):609-623. PubMed ID: 28647905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the ASR gene family from Brachypodium distachyon and functional characterization of BdASR1 in response to drought stress.
    Wang L; Hu W; Feng J; Yang X; Huang Q; Xiao J; Liu Y; Yang G; He G
    Plant Cell Rep; 2016 Jun; 35(6):1221-34. PubMed ID: 26905726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance.
    Ren YR; Yang YY; Zhang R; You CX; Zhao Q; Hao YJ
    Plant Sci; 2019 Nov; 288():110219. PubMed ID: 31521216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor.
    Rivera-Contreras IK; Zamora-Hernández T; Huerta-Heredia AA; Capataz-Tafur J; Barrera-Figueroa BE; Juntawong P; Peña-Castro JM
    Sci Rep; 2016 Jun; 6():27686. PubMed ID: 27282694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.