BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 28575838)

  • 1. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes.
    Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH
    Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of non-native phenazines to improve the performance of Pseudomonas aeruginosa MTCC 2474 catalysed fuel cells.
    Jayapriya J; Ramamurthy V
    Bioresour Technol; 2012 Nov; 124():23-8. PubMed ID: 22985848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
    Bosire EM; Blank LM; Rosenbaum MA
    Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells.
    Zhang T; Zhang L; Su W; Gao P; Li D; He X; Zhang Y
    Bioresour Technol; 2011 Jul; 102(14):7099-102. PubMed ID: 21596560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial phenazine production enhances electron transfer in biofuel cells.
    Rabaey K; Boon N; Höfte M; Verstraete W
    Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial development and structure of biofilms on microbial fuel cell anodes.
    Read ST; Dutta P; Bond PL; Keller J; Rabaey K
    BMC Microbiol; 2010 Apr; 10():98. PubMed ID: 20356407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N; Ferrera I; Mas J
    BMC Microbiol; 2017 Oct; 17(1):208. PubMed ID: 29047333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.
    Saba B; Christy AD; Yu Z; Co AC; Islam R; Tuovinen OH
    Bioelectrochemistry; 2017 Feb; 113():79-84. PubMed ID: 27816024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism.
    Zhang Y; Jiang J; Zhao Q; Gao Y; Wang K; Ding J; Yu H; Yao Y
    Bioelectrochemistry; 2017 Oct; 117():48-56. PubMed ID: 28624738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.
    Liu J; Qiao Y; Guo CX; Lim S; Song H; Li CM
    Bioresour Technol; 2012 Jun; 114():275-80. PubMed ID: 22483349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell.
    Yong XY; Yan ZY; Shen HB; Zhou J; Wu XY; Zhang LJ; Zheng T; Jiang M; Wei P; Jia HH; Yong YC
    Bioresour Technol; 2017 Oct; 241():1191-1196. PubMed ID: 28647320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway.
    Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P
    J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells.
    Yong YC; Yu YY; Li CM; Zhong JJ; Song H
    Biosens Bioelectron; 2011 Dec; 30(1):87-92. PubMed ID: 21945141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.
    Wang VB; Chua SL; Cao B; Seviour T; Nesatyy VJ; Marsili E; Kjelleberg S; Givskov M; Tolker-Nielsen T; Song H; Loo JS; Yang L
    PLoS One; 2013; 8(5):e63129. PubMed ID: 23700414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.