These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28575941)

  • 41. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications.
    Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.
    Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH
    Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model.
    Sun W; Zhang G; Tan L; Yang K; Ai H
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():506-11. PubMed ID: 27040245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.
    Fazel Anvari-Yazdi A; Tahermanesh K; Hadavi SM; Talaei-Khozani T; Razmkhah M; Abed SM; Mohtasebi MS
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():584-97. PubMed ID: 27612751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro and in vivo degradation and mechanical properties of ZEK100 magnesium alloy coated with alginate, chitosan and mechano-growth factor.
    Gao H; Zhang M; Zhao J; Gao L; Li M
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():450-61. PubMed ID: 27040239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF
    Li Z; Shizhao S; Chen M; Fahlman BD; Debao Liu ; Bi H
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1268-1280. PubMed ID: 28415416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.
    Bornapour M; Celikin M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications.
    Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E
    J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites.
    Ma C; Chen L; Xu J; Fehrenbacher A; Li Y; Pfefferkorn FE; Duffie NA; Zheng J; Li X
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):870-7. PubMed ID: 23359493
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.
    Zhang M; Cai S; Zhang F; Xu G; Wang F; Yu N; Wu X
    J Mater Sci Mater Med; 2017 Jun; 28(6):82. PubMed ID: 28424946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications.
    Bian D; Deng J; Li N; Chu X; Liu Y; Li W; Cai H; Xiu P; Zhang Y; Guan Z; Zheng Y; Kou Y; Jiang B; Chen R
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4394-4408. PubMed ID: 29310434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives.
    Shahin M; Munir K; Wen C; Li Y
    Acta Biomater; 2019 Sep; 96():1-19. PubMed ID: 31181263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility.
    Gao F; Hu Y; Li G; Liu S; Quan L; Yang Z; Wei Y; Pan C
    Bioact Mater; 2020 Sep; 5(3):611-623. PubMed ID: 32405576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite.
    Guo Y; Li G; Xu Y; Xu Z; Gang M; Sun G; Zhang Z; Yang X; Yu Z; Lian J; Ren L
    J Mech Behav Biomed Mater; 2021 Nov; 123():104759. PubMed ID: 34365100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.