BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28576001)

  • 1. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.
    Ke D; Bose S
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():398-404. PubMed ID: 28576001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology.
    Gao C; Wei P; Feng P; Xiao T; Shuai C; Peng S
    Int J Mol Sci; 2015 Mar; 16(4):6818-30. PubMed ID: 25815597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.
    Feng P; Wei P; Shuai C; Peng S
    PLoS One; 2014; 9(1):e87755. PubMed ID: 24498185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials.
    Doyle H; Lohfeld S; McHugh P
    Med Eng Phys; 2015 Aug; 37(8):767-76. PubMed ID: 26054804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature fabrication of high strength porous calcium phosphate and the evaluation of the osteoconductivity.
    Yu X; Cai S; Xu G; Zhou W; Wang D
    J Mater Sci Mater Med; 2009 Oct; 20(10):2025-34. PubMed ID: 19424778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds.
    Fielding GA; Bandyopadhyay A; Bose S
    Dent Mater; 2012 Feb; 28(2):113-22. PubMed ID: 22047943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.
    Vella JB; Trombetta RP; Hoffman MD; Inzana J; Awad H; Benoit DSW
    J Biomed Mater Res A; 2018 Mar; 106(3):663-672. PubMed ID: 29044984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.