BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28576024)

  • 21. In situ controlled release of rhBMP-2 in gelatin-coated 3D porous poly(ε-caprolactone) scaffolds for homogeneous bone tissue formation.
    Zhang Q; Tan K; Zhang Y; Ye Z; Tan WS; Lang M
    Biomacromolecules; 2014 Jan; 15(1):84-94. PubMed ID: 24266740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective layer-by-layer self-assembly on patterned porous films modulated by Cassie-Wenzel transition.
    Ke BB; Wan LS; Li Y; Xu MY; Xu ZK
    Phys Chem Chem Phys; 2011 Mar; 13(11):4881-7. PubMed ID: 21221432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly (epsilon-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts.
    Chung TW; Wang YZ; Huang YY; Pan CI; Wang SS
    Artif Organs; 2006 Jan; 30(1):35-41. PubMed ID: 16409396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering.
    Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small-diameter porous poly (epsilon-caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells.
    McMillan JR; Akiyama M; Tanaka M; Yamamoto S; Goto M; Abe R; Sawamura D; Shimomura M; Shimizu H
    Tissue Eng; 2007 Apr; 13(4):789-98. PubMed ID: 17228993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Honeycomb-Structured Porous Films from Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-
    Kulikouskaya VI; Nikalaichuk VV; Bonartsev AP; Akoulina EA; Belishev NV; Demianova IV; Chesnokova DV; Makhina TK; Bonartseva GA; Shaitan KV; Hileuskaya KS; Voinova VV
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pendant small functional groups on poly(ϵ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cells.
    Chen M; Zhang Y; Zhou Y; Zhang Y; Lang M; Ye Z; Tan WS
    Colloids Surf B Biointerfaces; 2015 Oct; 134():322-31. PubMed ID: 26209965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Layered Multiscale Porous Thin Films by Tuning Deposition Time and Molecular Weight of Polyelectrolytes.
    Yu J; Sanyal O; Izbicki AP; Lee I
    Macromol Rapid Commun; 2015 Sep; 36(18):1669-74. PubMed ID: 26178810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MgCHA particles dispersion in porous PCL scaffolds: in vitro mineralization and in vivo bone formation.
    Guarino V; Scaglione S; Sandri M; Alvarez-Perez MA; Tampieri A; Quarto R; Ambrosio L
    J Tissue Eng Regen Med; 2014 Apr; 8(4):291-303. PubMed ID: 22730225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(amido amine)-based multilayered thin films on 2D and 3D supports for surface-mediated cell transfection.
    Hujaya SD; Marchioli G; Roelofs K; van Apeldoorn AA; Moroni L; Karperien M; Paulusse JM; Engbersen JF
    J Control Release; 2015 May; 205():181-9. PubMed ID: 25637703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO(2) foaming.
    Salerno A; Zeppetelli S; Di Maio E; Iannace S; Netti PA
    Macromol Rapid Commun; 2011 Aug; 32(15):1150-6. PubMed ID: 21648005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines.
    Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Capability of Human Bone Marrow Mesenchymal Stem Cells and Endometrial Stem Cells to Differentiate into Motor Neurons on Electrospun Poly(ε-caprolactone) Scaffold.
    Shirian S; Ebrahimi-Barough S; Saberi H; Norouzi-Javidan A; Mousavi SM; Derakhshan MA; Arjmand B; Ai J
    Mol Neurobiol; 2016 Oct; 53(8):5278-87. PubMed ID: 26420037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion.
    Li J; Lam AT; Toh JP; Reuveny S; Oh SK; Birch WR
    Langmuir; 2017 Mar; 33(12):3068-3079. PubMed ID: 28221044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.