BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28576204)

  • 1. Interactive navigation-guided ophthalmic plastic surgery: the techniques and utility of 3-dimensional navigation.
    Ali MJ; Naik MN; Kaliki S; Dave TV; Dendukuri G
    Can J Ophthalmol; 2017 Jun; 52(3):250-257. PubMed ID: 28576204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive Navigation-Guided Ophthalmic Plastic Surgery: The Usefulness of Computed Tomography Angiographic Image Guidance.
    Ali MJ; Naik MN; Kaliki S; Dave TV
    Ophthalmic Plast Reconstr Surg; 2016; 32(5):393-8. PubMed ID: 27429230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orbitozygomatic fractures with enophthalmos: analysis of 64 cases treated late.
    He D; Li Z; Shi W; Sun Y; Zhu H; Lin M; Shen G; Fan X
    J Oral Maxillofac Surg; 2012 Mar; 70(3):562-76. PubMed ID: 21752509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital import of orbital implants to enhance navigation in reconstruction of the deep orbit.
    Varley I; White L; Salvi SM; Lee N
    Orbit; 2016; 35(1):20-3. PubMed ID: 26679992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive navigation-guided ophthalmic plastic surgery: the utility of 3D CT-DCG-guided dacryolocalization in secondary acquired lacrimal duct obstructions.
    Ali MJ; Singh S; Naik MN; Kaliki S; Dave TV
    Clin Ophthalmol; 2017; 11():127-133. PubMed ID: 28115826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of orbital wall fracture close to the optic canal using computer-assisted navigation surgery.
    Kim YH; Jung DW; Kim TG; Lee JH; Kim IK
    J Craniofac Surg; 2013 Jul; 24(4):1118-22. PubMed ID: 23851752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted navigation in orbitofacial surgery.
    Udhay P; Bhattacharjee K; Ananthnarayanan P; Sundar G
    Indian J Ophthalmol; 2019 Jul; 67(7):995-1003. PubMed ID: 31238394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of navigation for orthognathic surgery.
    Bobek SL
    Oral Maxillofac Surg Clin North Am; 2014 Nov; 26(4):587-98. PubMed ID: 25239214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of Optical Coherence Tomography as an Intraoperative Adjunct of Oculoplastic Surgery.
    Mukhtar S; Yu J
    Dev Ophthalmol; 2021; 61():32-39. PubMed ID: 33611329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictability in orbital reconstruction. A human cadaver study, part III: Implant-oriented navigation for optimized reconstruction.
    Dubois L; Essig H; Schreurs R; Jansen J; Maal TJ; Gooris PJ; Becking AG
    J Craniomaxillofac Surg; 2015 Dec; 43(10):2050-6. PubMed ID: 26454321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Computer-aided reconstruction of the facial skeleton : Planning and implementation in clinical routine].
    Wilde F; Schramm A
    HNO; 2016 Sep; 64(9):641-9. PubMed ID: 27525666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictability in orbital reconstruction: A human cadaver study. Part II: Navigation-assisted orbital reconstruction.
    Dubois L; Schreurs R; Jansen J; Maal TJ; Essig H; Gooris PJ; Becking AG
    J Craniomaxillofac Surg; 2015 Dec; 43(10):2042-9. PubMed ID: 26454323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning curve analysis of 3D-fluoroscopy image-guided pedicle screw insertions in lumbar single-level fusion procedures.
    Balling H
    Arch Orthop Trauma Surg; 2018 Nov; 138(11):1501-1509. PubMed ID: 29982886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries.
    Ali MJ; Singh S; Naik MN; Kaliki S; Dave TV
    Clin Ophthalmol; 2016; 10():2319-2324. PubMed ID: 27920491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The advantages of advanced computer-assisted diagnostics and three-dimensional preoperative planning on implant position in orbital reconstruction.
    Jansen J; Schreurs R; Dubois L; Maal TJJ; Gooris PJJ; Becking AG
    J Craniomaxillofac Surg; 2018 Apr; 46(4):715-721. PubMed ID: 29548880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort.
    Bell RB; Markiewicz MR
    J Oral Maxillofac Surg; 2009 Dec; 67(12):2559-70. PubMed ID: 19925972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigation-guided reduction and orbital floor reconstruction in the treatment of zygomatic-orbital-maxillary complex fractures.
    Yu H; Shen G; Wang X; Zhang S
    J Oral Maxillofac Surg; 2010 Jan; 68(1):28-34. PubMed ID: 20006151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures.
    Morrison CS; Taylor HO; Sullivan SR
    J Craniofac Surg; 2013 May; 24(3):e284-6. PubMed ID: 23714993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal invasive biopsy of intraconal expansion by PET/CT/MRI image-guided navigation: a new method.
    Reinbacher KE; Pau M; Wallner J; Zemann W; Klein A; Gstettner C; Aigner RM; Feichtinger M
    J Craniomaxillofac Surg; 2014 Oct; 42(7):1184-9. PubMed ID: 24726395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-guided orbital reconstruction to improve outcomes.
    Bly RA; Chang SH; Cudejkova M; Liu JJ; Moe KS
    JAMA Facial Plast Surg; 2013 Mar; 15(2):113-20. PubMed ID: 23306963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.