These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28576320)

  • 1. Self-assembled structures of N-alkylated bisbenzimidazolyl naphthalene in aqueous media for highly sensitive detection of picric acid.
    Wu YC; Luo SH; Cao L; Jiang K; Wang LY; Xie JC; Wang ZY
    Anal Chim Acta; 2017 Jul; 976():74-83. PubMed ID: 28576320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution.
    Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N,N-Diethylamine appended binuclear Zn(ii) complexes: highly selective and sensitive fluorescent chemosensors for picric acid.
    Kumar A; Kumar A; Pandey DS
    Dalton Trans; 2016 May; 45(20):8475-84. PubMed ID: 27114325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets.
    Sandhu S; Kumar R; Singh P; Mahajan A; Kaur M; Kumar S
    ACS Appl Mater Interfaces; 2015 May; 7(19):10491-500. PubMed ID: 25915852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.
    Santra DC; Bera MK; Sukul PK; Malik S
    Chemistry; 2016 Feb; 22(6):2012-2019. PubMed ID: 26743445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion-Exchange Induced Strong π-π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection.
    Kalita A; Hussain S; Malik AH; Barman U; Goswami N; Iyer PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25326-36. PubMed ID: 27589572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.
    Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives.
    Wang ZJ; Qin L; Chen JX; Zheng HG
    Inorg Chem; 2016 Nov; 55(21):10999-11005. PubMed ID: 27767307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-rich triphenylamine-based sensors for picric acid detection.
    Chowdhury A; Mukherjee PS
    J Org Chem; 2015 Apr; 80(8):4064-75. PubMed ID: 25822377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbazolyl-Modified Neutral Ir(III) Complexes for Efficient Detection of Picric Acid in Aqueous Media.
    Xu J; Zhang L; Shi Y; Liu C
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled discrete molecules for sensing nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chemistry; 2015 Apr; 21(18):6656-66. PubMed ID: 25694365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled pentacenequinone derivative for trace detection of picric acid.
    Bhalla V; Gupta A; Kumar M; Rao DS; Prasad SK
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):672-9. PubMed ID: 23317496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene.
    Tanwar AS; Adil LR; Afroz MA; Iyer PK
    ACS Sens; 2018 Aug; 3(8):1451-1461. PubMed ID: 30039698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triphenylene derivatives: chemosensors for sensitive detection of nitroaromatic explosives.
    Bhalla V; Arora H; Singh H; Kumar M
    Dalton Trans; 2013 Jan; 42(4):969-74. PubMed ID: 23108226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups.
    Mi HY; Liu JL; Guan MM; Liu QW; Zhang ZQ; Feng GD
    Talanta; 2018 Sep; 187():314-320. PubMed ID: 29853053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.
    Gogoi B; Sen Sarma N
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11195-202. PubMed ID: 25955402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms.
    Malik AH; Hussain S; Kalita A; Iyer PK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26968-76. PubMed ID: 26580229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recyclable Polymeric Thin Films for the Selective Detection and Separation of Picric Acid.
    Gupta M; Lee HI
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41717-41723. PubMed ID: 30398831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propylimidazole Functionalized Coumarin Derivative as Dual Responsive Fluorescent Chemoprobe for Picric Acid and Fe
    Karuk Elmas SN; Karagoz A; Arslan FN; Yilmaz I
    J Fluoresc; 2022 Jul; 32(4):1357-1367. PubMed ID: 35377047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium.
    Kaja S; Damera DP; Nag A
    Anal Chim Acta; 2020 Sep; 1129():12-23. PubMed ID: 32891381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.