These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 28576368)
1. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368 [TBL] [Abstract][Full Text] [Related]
2. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Pinto L; Malfeito-Ferreira M; Quintieri L; Silva AC; Baruzzi F Int J Food Microbiol; 2019 May; 296():65-74. PubMed ID: 30851642 [TBL] [Abstract][Full Text] [Related]
3. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040 [TBL] [Abstract][Full Text] [Related]
4. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries. Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111 [TBL] [Abstract][Full Text] [Related]
5. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Mar; 154(3):152-61. PubMed ID: 22277696 [TBL] [Abstract][Full Text] [Related]
6. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022 [TBL] [Abstract][Full Text] [Related]
7. Grape Sour Rot: A Four-Way Interaction Involving the Host, Yeast, Acetic Acid Bacteria, and Insects. Hall ME; Loeb GM; Cadle-Davidson L; Evans KJ; Wilcox WF Phytopathology; 2018 Dec; 108(12):1429-1442. PubMed ID: 29969063 [TBL] [Abstract][Full Text] [Related]
9. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California. Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622 [TBL] [Abstract][Full Text] [Related]
10. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
11. Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. Apaliya MT; Zhang H; Zheng X; Yang Q; Mahunu GK; Kwaw E J Sci Food Agric; 2018 Sep; 98(12):4665-4672. PubMed ID: 29533461 [TBL] [Abstract][Full Text] [Related]
12. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Ioriatti C; Guzzon R; Anfora G; Ghidoni F; Mazzoni V; Villegas TR; Dalton DT; Walton VM J Econ Entomol; 2018 Feb; 111(1):283-292. PubMed ID: 29202199 [TBL] [Abstract][Full Text] [Related]
13. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis 'Soreli' during cold storage. Goffi V; Zampella L; Forniti R; Petriccione M; Botondi R J Sci Food Agric; 2019 Oct; 99(13):5654-5661. PubMed ID: 31141163 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Ethanol Treatment on the Quality of a New Table Grape Cultivar It 681-30 Stored at Low Temperature and after a 7-Day Shelf-Life Period at 20 °C: A Molecular Approach. Romero I; Vazquez-Hernandez M; Tornel M; Escribano MI; Merodio C; Sanchez-Ballesta MT Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360903 [TBL] [Abstract][Full Text] [Related]
15. Starch-based antifungal edible coatings to control sour rot caused by Geotrichum citri-aurantii and maintain postharvest quality of 'Fino' lemon. Soto-Muñoz L; Martínez-Blay V; Pérez-Gago MB; Fernández-Catalán A; Argente-Sanchis M; Palou L J Sci Food Agric; 2022 Jan; 102(2):794-800. PubMed ID: 34223648 [TBL] [Abstract][Full Text] [Related]
16. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778 [TBL] [Abstract][Full Text] [Related]
17. Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. Barata A; Seborro F; Belloch C; Malfeito-Ferreira M; Loureiro V J Appl Microbiol; 2008 Apr; 104(4):1182-91. PubMed ID: 17976167 [TBL] [Abstract][Full Text] [Related]
18. Quality and PR gene expression of table grapes treated with ozone and sulfur dioxide to control fungal decay. Duarte-Sierra A; Aispuro-Hernández E; Vargas-Arispuro I; Islas-Osuna MA; González-Aguilar GA; Martínez-Téllez MÁ J Sci Food Agric; 2016 Apr; 96(6):2018-24. PubMed ID: 26085036 [TBL] [Abstract][Full Text] [Related]
19. First Report of Melting Decay of 'Red Globe' Grapes in California. Morgan DP; Michailides TJ Plant Dis; 2004 Sep; 88(9):1047. PubMed ID: 30812232 [TBL] [Abstract][Full Text] [Related]
20. The emerging contribution of social wasps to grape rot disease ecology. Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT PeerJ; 2017; 5():e3223. PubMed ID: 28462032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]