These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28576419)

  • 1. Crash risk analysis during fog conditions using real-time traffic data.
    Wu Y; Abdel-Aty M; Lee J
    Accid Anal Prev; 2018 May; 114():4-11. PubMed ID: 28576419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying crash-prone traffic conditions under different weather on freeways.
    Xu C; Wang W; Liu P
    J Safety Res; 2013 Sep; 46():135-44. PubMed ID: 23932695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time assessment of fog-related crashes using airport weather data: a feasibility analysis.
    Ahmed MM; Abdel-Aty M; Lee J; Yu R
    Accid Anal Prev; 2014 Nov; 72():309-17. PubMed ID: 25108899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effect of ramp metering on freeway safety using real-time traffic data.
    Haule HJ; Ali MS; Alluri P; Sando T
    Accid Anal Prev; 2021 Jul; 157():106181. PubMed ID: 34015602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data.
    Das A; Ghasemzadeh A; Ahmed MM
    J Safety Res; 2019 Feb; 68():71-80. PubMed ID: 30876522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approach-level real-time crash risk analysis for signalized intersections.
    Yuan J; Abdel-Aty M
    Accid Anal Prev; 2018 Oct; 119():274-289. PubMed ID: 30075396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to determine an optimal threshold to classify real-time crash-prone traffic conditions?
    Yang K; Yu R; Wang X; Quddus M; Xue L
    Accid Anal Prev; 2018 Aug; 117():250-261. PubMed ID: 29727862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data.
    Chen F; Chen S; Ma X
    J Safety Res; 2018 Jun; 65():153-159. PubMed ID: 29776524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding crash mechanism on urban expressways using high-resolution traffic data.
    Hossain M; Muromachi Y
    Accid Anal Prev; 2013 Aug; 57():17-29. PubMed ID: 23628939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

  • 11. Predicting crash likelihood and severity on freeways with real-time loop detector data.
    Xu C; Tarko AP; Wang W; Liu P
    Accid Anal Prev; 2013 Aug; 57():30-9. PubMed ID: 23628940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of freeway traffic parameters leading to lane-change related collisions.
    Pande A; Abdel-Aty M
    Accid Anal Prev; 2006 Sep; 38(5):936-48. PubMed ID: 16729948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors.
    Wang L; Abdel-Aty M; Lee J; Shi Q
    Accid Anal Prev; 2019 Jan; 122():378-384. PubMed ID: 28689932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a real-time crash risk prediction model incorporating the various crash mechanisms across different traffic states.
    Xu C; Wang W; Liu P; Zhang F
    Traffic Inj Prev; 2015; 16(1):28-35. PubMed ID: 24697528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on crashes related to visibility obstruction due to fog and smoke.
    Abdel-Aty M; Ekram AA; Huang H; Choi K
    Accid Anal Prev; 2011 Sep; 43(5):1730-7. PubMed ID: 21658500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models.
    Chen F; Chen S; Ma X
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27322306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting crash risk and identifying crash precursors on Korean expressways using loop detector data.
    Kwak HC; Kho S
    Accid Anal Prev; 2016 Mar; 88():9-19. PubMed ID: 26710266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the effect of adverse weather on road transportation using weather and traffic sensors.
    Peng Y; Jiang Y; Lu J; Zou Y
    PLoS One; 2018; 13(10):e0205409. PubMed ID: 30325948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Imitation Phenomenon on Two-lane Traffic Safety in Fog Weather.
    Tan J; Gong L; Qin X
    Int J Environ Res Public Health; 2019 Oct; 16(19):. PubMed ID: 31581592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data.
    Yu R; Abdel-Aty M
    Accid Anal Prev; 2014 Jan; 62():161-7. PubMed ID: 24172082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.