BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28576971)

  • 1. Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin.
    Willer MK; Carroll CW
    J Cell Sci; 2017 Jul; 130(13):2111-2118. PubMed ID: 28576971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress.
    Asparuhova MB; Ferralli J; Chiquet M; Chiquet-Ehrismann R
    FASEB J; 2011 Oct; 25(10):3477-88. PubMed ID: 21705668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.
    Ho CY; Jaalouk DE; Vartiainen MK; Lammerding J
    Nature; 2013 May; 497(7450):507-11. PubMed ID: 23644458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β.
    Sandbo N; Lau A; Kach J; Ngam C; Yau D; Dulin NO
    Am J Physiol Lung Cell Mol Physiol; 2011 Nov; 301(5):L656-66. PubMed ID: 21856814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity.
    Kalita K; Kharebava G; Zheng JJ; Hetman M
    J Neurosci; 2006 Sep; 26(39):10020-32. PubMed ID: 17005865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.
    Cen B; Selvaraj A; Burgess RC; Hitzler JK; Ma Z; Morris SW; Prywes R
    Mol Cell Biol; 2003 Sep; 23(18):6597-608. PubMed ID: 12944485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of SRF-dependent gene expression by association of SPT16 with MKL1.
    Kihara T; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):629-37. PubMed ID: 18036521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA.
    Thakar K; May CK; Rogers A; Carroll CW
    Mol Biol Cell; 2017 Jan; 28(1):182-191. PubMed ID: 28035049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of irradiation-induced mammary cancer metastasis: A role for SAP-dependent Mkl1 signaling.
    Asparuhova MB; Secondini C; Rüegg C; Chiquet-Ehrismann R
    Mol Oncol; 2015 Oct; 9(8):1510-27. PubMed ID: 25999144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filamin A interacts with the coactivator MKL1 to promote the activity of the transcription factor SRF and cell migration.
    Kircher P; Hermanns C; Nossek M; Drexler MK; Grosse R; Fischer M; Sarikas A; Penkava J; Lewis T; Prywes R; Gudermann T; Muehlich S
    Sci Signal; 2015 Nov; 8(402):ra112. PubMed ID: 26554816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction.
    Huang X; Yang N; Fiore VF; Barker TH; Sun Y; Morris SW; Ding Q; Thannickal VJ; Zhou Y
    Am J Respir Cell Mol Biol; 2012 Sep; 47(3):340-8. PubMed ID: 22461426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function.
    Sun Y; Boyd K; Xu W; Ma J; Jackson CW; Fu A; Shillingford JM; Robinson GW; Hennighausen L; Hitzler JK; Ma Z; Morris SW
    Mol Cell Biol; 2006 Aug; 26(15):5809-26. PubMed ID: 16847333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages.
    Xie L
    BMC Genomics; 2014 Apr; 15():301. PubMed ID: 24758171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression.
    Smith ER; Meng Y; Moore R; Tse JD; Xu AG; Xu XX
    BMC Cell Biol; 2017 Jan; 18(1):8. PubMed ID: 28088180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting-Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases.
    Sprenkeler EGG; Guenther C; Faisal I; Kuijpers TW; Fagerholm SC
    Front Immunol; 2021; 12():615477. PubMed ID: 33692789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for MKL1 in megakaryocytic maturation.
    Cheng EC; Luo Q; Bruscia EM; Renda MJ; Troy JA; Massaro SA; Tuck D; Schulz V; Mane SM; Berliner N; Sun Y; Morris SW; Qiu C; Krause DS
    Blood; 2009 Mar; 113(12):2826-34. PubMed ID: 19136660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation.
    Selvaraj A; Prywes R
    J Biol Chem; 2003 Oct; 278(43):41977-87. PubMed ID: 14565952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerin and the nuclear lamina in muscle and cardiac disease.
    Holaska JM
    Circ Res; 2008 Jul; 103(1):16-23. PubMed ID: 18596264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression.
    Cen B; Selvaraj A; Prywes R
    J Cell Biochem; 2004 Sep; 93(1):74-82. PubMed ID: 15352164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Checkpoint activation drives global gene expression changes in Drosophila nuclear lamina mutants.
    Kitzman SC; Duan T; Pufall MA; Geyer PK
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34893833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.