These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 28577148)
1. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Mohammadzadeh A; Mahdavi Damghani A; Vafabakhsh J; Deihimfard R Environ Sci Pollut Res Int; 2017 Jul; 24(20):16971-16984. PubMed ID: 28577148 [TBL] [Abstract][Full Text] [Related]
2. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Yousefi M; Mahdavi Damghani A; Khoramivafa M Environ Sci Pollut Res Int; 2016 Apr; 23(8):7390-7. PubMed ID: 26690584 [TBL] [Abstract][Full Text] [Related]
3. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Yousefi M; Damghani AM; Khoramivafa M Sci Total Environ; 2014 Sep; 493():330-5. PubMed ID: 24951890 [TBL] [Abstract][Full Text] [Related]
4. Energy Consumption, Carbon Emissions and Global Warming Potential of Wolfberry Production in Jingtai Oasis, Gansu Province, China. Wang Y; Ma Q; Li Y; Sun T; Jin H; Zhao C; Milne E; Easter M; Paustian K; Yong HWA; McDonagh J Environ Manage; 2019 Dec; 64(6):772-782. PubMed ID: 31748948 [TBL] [Abstract][Full Text] [Related]
5. Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo-Gangetic Plains. Chaudhary VP; Chandra R; Chaudhary R; Bhattacharyya R J Environ Manage; 2021 Oct; 296():113182. PubMed ID: 34229138 [TBL] [Abstract][Full Text] [Related]
6. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran-a case study of Alborz province. Pishgar-Komleh SH; Akram A; Keyhani A; van Zelm R Environ Sci Pollut Res Int; 2017 Jul; 24(19):16041-16049. PubMed ID: 28537021 [TBL] [Abstract][Full Text] [Related]
7. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India. Lenka S; Lenka NK; Singh AB; Singh B; Raghuwanshi J Environ Sci Pollut Res Int; 2017 Feb; 24(5):4603-4612. PubMed ID: 27957695 [TBL] [Abstract][Full Text] [Related]
8. Environmental evaluation and optimization of energy use and greenhouse gases mitigation for farm production systems in Mashhad, Iran. Taleghani A; Almassi M; Ghahderijani M Environ Sci Pollut Res Int; 2020 Oct; 27(28):35272-35283. PubMed ID: 32592049 [TBL] [Abstract][Full Text] [Related]
9. Energy analyses and greenhouse gas emissions assessment for saffron production cycle. Bakhtiari AA; Hematian A; Sharifi A Environ Sci Pollut Res Int; 2015 Oct; 22(20):16184-201. PubMed ID: 26070740 [TBL] [Abstract][Full Text] [Related]
10. Ecological footprints of environmental resources for agricultural production in Iran: a model-based study. Soltani E; Soltani A; Alimagham M; Zand E Environ Sci Pollut Res Int; 2021 Dec; 28(48):68972-68981. PubMed ID: 34282550 [TBL] [Abstract][Full Text] [Related]
11. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India. Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009 [TBL] [Abstract][Full Text] [Related]
12. Impact of management strategies on the global warming potential at the cropping system level. Goglio P; Grant BB; Smith WN; Desjardins RL; Worth DE; Zentner R; Malhi SS Sci Total Environ; 2014 Aug; 490():921-33. PubMed ID: 24911772 [TBL] [Abstract][Full Text] [Related]
13. Life cycle environmental impacts of saffron production in Iran. Khanali M; Shahvarooghi Farahani S; Shojaei H; Elhami B Environ Sci Pollut Res Int; 2017 Feb; 24(5):4812-4821. PubMed ID: 27987119 [TBL] [Abstract][Full Text] [Related]
14. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Mosier AR; Halvorson AD; Reule CA; Liu XJ J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479 [TBL] [Abstract][Full Text] [Related]
15. Energy, economic, and environmental (3E) assessment of the major greenhouse crops: MFCA-LCA approach. Dekamin M; Sadeghimofrad T; Ahmadloo A Environ Sci Pollut Res Int; 2024 Mar; 31(14):21894-21912. PubMed ID: 38400977 [TBL] [Abstract][Full Text] [Related]
16. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Jin VL; Schmer MR; Stewart CE; Sindelar AJ; Varvel GE; Wienhold BJ Glob Chang Biol; 2017 Jul; 23(7):2848-2862. PubMed ID: 28135027 [TBL] [Abstract][Full Text] [Related]
17. Reconsidering the contribution of Canadian poultry production to anthropogenic greenhouse gas emissions: returning to an integrated crop-poultry production system paradigm. Oryschak MA; Beltranena E Poult Sci; 2020 Aug; 99(8):3777-3783. PubMed ID: 32731963 [TBL] [Abstract][Full Text] [Related]
18. Biochemical production of bioenergy from agricultural crops and residue in Iran. Karimi Alavijeh M; Yaghmaei S Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716 [TBL] [Abstract][Full Text] [Related]
19. Optimizing rice yields while minimizing yield-scaled global warming potential. Pittelkow CM; Adviento-Borbe MA; van Kessel C; Hill JE; Linquist BA Glob Chang Biol; 2014 May; 20(5):1382-93. PubMed ID: 24115565 [TBL] [Abstract][Full Text] [Related]
20. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China. Chen Z; Chen F; Zhang H; Liu S Environ Sci Pollut Res Int; 2016 Dec; 23(24):24781-24795. PubMed ID: 27658406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]