These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28577238)

  • 1. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins.
    Saravanan KM; Selvaraj S
    J Biol Phys; 2017 Jun; 43(2):265-278. PubMed ID: 28577238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local propensities and statistical potentials of backbone dihedral angles in proteins.
    Betancourt MR; Skolnick J
    J Mol Biol; 2004 Sep; 342(2):635-49. PubMed ID: 15327961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disallowed Ramachandran conformations of amino acid residues in protein structures.
    Gunasekaran K; Ramakrishnan C; Balaram P
    J Mol Biol; 1996 Nov; 264(1):191-8. PubMed ID: 8950277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units.
    Rosenberg AA; Yehishalom N; Marx A; Bronstein AM
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2301064120. PubMed ID: 37878722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Ramachandran plot from a new angle.
    Zhou AQ; O'Hern CS; Regan L
    Protein Sci; 2011 Jul; 20(7):1166-71. PubMed ID: 21538644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding.
    Gunasekaran K; Nussinov R
    J Mol Biol; 2007 Jan; 365(1):257-73. PubMed ID: 17059826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of dihedral angle preferences for alanine and glycine residues in alpha and beta transmembrane regions.
    Saravanan KM; Krishnaswamy S
    J Biomol Struct Dyn; 2015; 33(3):552-62. PubMed ID: 24625248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Ramachandran Maps to Tertiary Structures of Proteins.
    DasGupta D; Kaushik R; Jayaram B
    J Phys Chem B; 2015 Aug; 119(34):11136-45. PubMed ID: 26098815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local Backbone Geometry Plays a Critical Role in Determining Conformational Preferences of Amino Acid Residues in Proteins.
    Balasco N; Esposito L; De Simone A; Vitagliano L
    Biomolecules; 2022 Aug; 12(9):. PubMed ID: 36139023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acids with hydrogen-bonding side chains have an intrinsic tendency to sample various turn conformations in aqueous solution.
    Hagarman A; Mathieu D; Toal S; Measey TJ; Schwalbe H; Schweitzer-Stenner R
    Chemistry; 2011 Jun; 17(24):6789-97. PubMed ID: 21547966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Disallowed conformations of polypeptide chain exemplified by the β-bend of the β-hairpin in the α-spectrin CH3-domain].
    Uroshlev LA; Torshin IIu; Batianovskiĭ AV; Esipova NG; Tumanian VG
    Biofizika; 2015; 60(1):5-14. PubMed ID: 25868335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins.
    Schrauber H; Eisenhaber F; Argos P
    J Mol Biol; 1993 Mar; 230(2):592-612. PubMed ID: 8464066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural compromise of disallowed conformations in peptide and protein structures.
    Ramakrishnan C; Lakshmi B; Kurien A; Devipriya D; Srinivasan N
    Protein Pept Lett; 2007; 14(7):672-82. PubMed ID: 17897093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.
    Ponnuraj K; Saravanan KM
    Int J Biol Macromol; 2017 Apr; 97():434-439. PubMed ID: 28099891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks.
    Helles G; Fonseca R
    BMC Bioinformatics; 2009 Oct; 10():338. PubMed ID: 19835576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On residues in the disallowed region of the Ramachandran map.
    Pal D; Chakrabarti P
    Biopolymers; 2002 Mar; 63(3):195-206. PubMed ID: 11787007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein backbone conformation based on seven structure assignments. Influence of local interactions.
    Rooman MJ; Kocher JP; Wodak SJ
    J Mol Biol; 1991 Oct; 221(3):961-79. PubMed ID: 1942039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composites of local structure propensities: evidence for local encoding of long-range structure.
    Shortle D
    Protein Sci; 2002 Jan; 11(1):18-26. PubMed ID: 11742118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.