BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28577431)

  • 1. Supramolecular organization of NMDA receptors and the postsynaptic density.
    Frank RA; Grant SG
    Curr Opin Neurobiol; 2017 Aug; 45():139-147. PubMed ID: 28577431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation.
    Frank RA; Komiyama NH; Ryan TJ; Zhu F; O'Dell TJ; Grant SG
    Nat Commun; 2016 Apr; 7():11264. PubMed ID: 27117477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density.
    Chen X; Levy JM; Hou A; Winters C; Azzam R; Sousa AA; Leapman RD; Nicoll RA; Reese TS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6983-92. PubMed ID: 26604311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes.
    Frank RAW; Zhu F; Komiyama NH; Grant SGN
    J Neurochem; 2017 Aug; 142(4):504-511. PubMed ID: 28452394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses.
    Akashi K; Kakizaki T; Kamiya H; Fukaya M; Yamasaki M; Abe M; Natsume R; Watanabe M; Sakimura K
    J Neurosci; 2009 Sep; 29(35):10869-82. PubMed ID: 19726645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus.
    Park CS; Elgersma Y; Grant SG; Morrison JH
    Neuroscience; 2008 Jan; 151(1):43-55. PubMed ID: 18082335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting molecular architecture of post-synaptic density at excitatory synapses: An Editorial Highlight for 'Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes' on page 504.
    Chen J; Pan HL
    J Neurochem; 2017 Aug; 142(4):500-503. PubMed ID: 28741701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of synaptic protein composition during developmental synapse maturation.
    Kaizuka T; Takumi T
    Eur J Neurosci; 2024 Jun; 59(11):2894-2914. PubMed ID: 38571321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors.
    MacGillavry HD; Song Y; Raghavachari S; Blanpied TA
    Neuron; 2013 May; 78(4):615-22. PubMed ID: 23719161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Crowding within the Postsynaptic Density Can Impede the Escape of Membrane Proteins.
    Li TP; Song Y; MacGillavry HD; Blanpied TA; Raghavachari S
    J Neurosci; 2016 Apr; 36(15):4276-95. PubMed ID: 27076425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and trafficking of NMDA and GABAA receptors.
    Stephenson FA
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):877-81. PubMed ID: 17052219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular mechanism underlying the formation and maintenance of excitatory synapses].
    Kondo S; Okabe S
    Brain Nerve; 2011 Jan; 63(1):51-8. PubMed ID: 21228448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of synaptic plasticity. Changes in postsynaptic densities and glutamate receptors in chicken forebrain during maturation.
    Rostas JA; Kavanagh JM; Dodd PR; Heath JW; Powis DA
    Mol Neurobiol; 1991; 5(2-4):203-16. PubMed ID: 1668386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of NMDA receptors thickens the postsynaptic density via proteolysis.
    Fukunaga Y; Nakajima E; Hatano E; Itoh S; Kashino Y; Miyazawa A
    Neurosci Res; 2015 Dec; 101():6-14. PubMed ID: 26188126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular mechanisms underlying the regulation of synapse function and the molecular architecture of the postsynaptic density].
    Bito H; Nonaka M; Fuse T; Fujii H; Takemoto-Kimura S; Okuno H
    Tanpakushitsu Kakusan Koso; 2008 Mar; 53(4 Suppl):418-23. PubMed ID: 21089313
    [No Abstract]   [Full Text] [Related]  

  • 16. Colocalization of distinct NMDA receptor subtypes at excitatory synapses in the entorhinal cortex.
    Beesley S; Sullenberger T; Pilli J; Abbasi S; Gunjan A; Kumar SS
    J Neurophysiol; 2019 Jan; 121(1):238-254. PubMed ID: 30461362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction.
    Balu DT; Coyle JT
    Brain Res; 2011 May; 1392():1-7. PubMed ID: 21443867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAGUK proteins: new targets for pharmacological intervention in the glutamatergic synapse.
    Gardoni F
    Eur J Pharmacol; 2008 May; 585(1):147-52. PubMed ID: 18367167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain.
    Ventruti A; Kazdoba TM; Niu S; D'Arcangelo G
    Neuroscience; 2011 Aug; 189():32-42. PubMed ID: 21664258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral organization of the postsynaptic density.
    MacGillavry HD; Kerr JM; Blanpied TA
    Mol Cell Neurosci; 2011 Dec; 48(4):321-31. PubMed ID: 21920440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.