BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28578024)

  • 21. Multimeric C9 within C5b-9 is required for inner membrane damage to Escherichia coli J5 during complement killing.
    Bloch EF; Schmetz MA; Foulds J; Hammer CH; Frank MM; Joiner KA
    J Immunol; 1987 Feb; 138(3):842-8. PubMed ID: 3100618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis.
    Beum PV; Lindorfer MA; Beurskens F; Stukenberg PT; Lokhorst HM; Pawluczkowycz AW; Parren PW; van de Winkel JG; Taylor RP
    J Immunol; 2008 Jul; 181(1):822-32. PubMed ID: 18566448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperation between Hsp90 and mortalin/GRP75 in resistance to cell death induced by complement C5b-9.
    Rozenberg P; Ziporen L; Gancz D; Saar-Ray M; Fishelson Z
    Cell Death Dis; 2018 Feb; 9(2):150. PubMed ID: 29396434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane attack complex of complement in dermatitis herpetiformis.
    Dahl MV; Falk RJ; Carpenter R; Michael AF
    Arch Dermatol; 1985 Jan; 121(1):70-2. PubMed ID: 3881089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction and characterization of recombinant human C9 or C7 linked to single chain Fv directed to CD25.
    Raitses Gurevich M; Fishelson Z
    Mol Immunol; 2013 Oct; 55(3-4):400-8. PubMed ID: 23582305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody.
    Winkler MT; Bushey RT; Gottlin EB; Campa MJ; Guadalupe ES; Volkheimer AD; Weinberg JB; Patz EF
    PLoS One; 2017; 12(6):e0179841. PubMed ID: 28658265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers.
    Meri S; Morgan BP; Davies A; Daniels RH; Olavesen MG; Waldmann H; Lachmann PJ
    Immunology; 1990 Sep; 71(1):1-9. PubMed ID: 1698710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between channel size and the number of C9 molecules in the C5b-9 complex.
    Ramm LE; Whitlow MB; Mayer MM
    J Immunol; 1985 Apr; 134(4):2594-9. PubMed ID: 2579147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein.
    Podack ER; Preissner KT; Müller-Eberhard HJ
    Acta Pathol Microbiol Immunol Scand Suppl; 1984; 284():89-96. PubMed ID: 6587746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. C9-mediated killing of bacterial cells by transferred C5b-8 complexes: transferred C5b-9 complexes are nonbactericidal.
    Blanchard KP; Dankert JR
    Infect Immun; 1994 Oct; 62(10):4101-6. PubMed ID: 7927662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The membrane attack complex of complement: C5b-8 complex as accelerator of C9 polymerization.
    Tschopp J; Podack ER; Müller-Eberhard HJ
    J Immunol; 1985 Jan; 134(1):495-9. PubMed ID: 3964819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores.
    Doorduijn DJ; Heesterbeek DAC; Ruyken M; de Haas CJC; Stapels DAC; Aerts PC; Rooijakkers SHM; Bardoel BW
    PLoS Pathog; 2021 Nov; 17(11):e1010051. PubMed ID: 34752492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmembrane channel-formation by five complement proteins.
    Müller-Eberhard HJ
    Biochem Soc Symp; 1985; 50():235-46. PubMed ID: 2428370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resistance of Escherichia coli to osmotically introduced complement component C9.
    Dankert JR
    Infect Immun; 1991 Jan; 59(1):109-13. PubMed ID: 1987022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of soluble CD59 with the terminal complement complexes. CD59 and C9 compete for a nascent epitope on C8.
    Lehto T; Meri S
    J Immunol; 1993 Nov; 151(9):4941-9. PubMed ID: 7691959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recurrent meningitis in a patient with congenital deficiency of the C9 component of complement. First case of C9 deficiency in Europe.
    Zoppi M; Weiss M; Nydegger UE; Hess T; Späth PJ
    Arch Intern Med; 1990 Nov; 150(11):2395-9. PubMed ID: 2241452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of C9 in complement-mediated killing of Neisseria.
    Harriman GR; Esser AF; Podack ER; Wunderlich AC; Braude AI; Lint TF; Curd JG
    J Immunol; 1981 Dec; 127(6):2386-90. PubMed ID: 6795273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between polymerization of complement component C9 and membrane channel formation.
    DiScipio RG
    J Immunol; 1991 Dec; 147(12):4239-47. PubMed ID: 1721643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular phosphorylation of C9 by protein kinase CK2 regulates complement-mediated lysis.
    Bohana-Kashtan O; Pinna LA; Fishelson Z
    Eur J Immunol; 2005 Jun; 35(6):1939-48. PubMed ID: 15902683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.