These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28578279)

  • 1. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method.
    Li X; Lu Y; Luo H; Liu G; Zhang R
    Bioresour Technol; 2017 Oct; 241():384-390. PubMed ID: 28578279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate.
    Li X; Lu Y; Luo H; Liu G; Torres CI; Zhang R
    Chemosphere; 2021 Feb; 265():129088. PubMed ID: 33280848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell.
    Xu G; Zheng X; Lu Y; Liu G; Luo H; Li X; Zhang R; Jin S
    Sci Total Environ; 2019 May; 665():641-648. PubMed ID: 30776636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell.
    Li X; Zeng C; Lu Y; Liu G; Luo H; Zhang R
    Bioresour Technol; 2019 Feb; 274():403-409. PubMed ID: 30551043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.
    Li C; Xu M; Lu Y; Fang F; Cao J
    Environ Technol; 2016; 37(6):752-61. PubMed ID: 26278100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system.
    Elmaadawy K; Hu J; Guo S; Hou H; Xu J; Wang D; Liang T; Yang J; Liang S; Xiao K; Liu B
    Bioresour Technol; 2020 Aug; 310():123420. PubMed ID: 32339889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells.
    Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D
    Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anodic and cathodic microbial communities in single chamber microbial fuel cells.
    Daghio M; Gandolfi I; Bestetti G; Franzetti A; Guerrini E; Cristiani P
    N Biotechnol; 2015 Jan; 32(1):79-84. PubMed ID: 25291711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anodic and cathodic biofilms coupled with electricity generation in single-chamber microbial fuel cell using activated sludge.
    Sakr EAE; Khater DZ; El-Khatib KM
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2627-2643. PubMed ID: 34498106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Treatment of Cu(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate].
    Liang M; Tao HC; Li SF; Li W; Zhang LJ; Ni JR
    Huan Jing Ke Xue; 2011 Jan; 32(1):179-85. PubMed ID: 21404684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.
    Rago L; Cristiani P; Villa F; Zecchin S; Colombo A; Cavalca L; Schievano A
    Bioelectrochemistry; 2017 Aug; 116():39-51. PubMed ID: 28453974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure.
    Long S; Zhao L; Chen J; Kim J; Huang CH; Pavlostathis SG
    Bioresour Technol; 2021 Feb; 322():124534. PubMed ID: 33360083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities.
    Li J; Li H; Zheng J; Zhang L; Fu Q; Zhu X; Liao Q
    Bioresour Technol; 2017 Jun; 233():1-6. PubMed ID: 28258990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts.
    Wu Y; Wang L; Jin M; Zhang K
    Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of anodophilic biofilm bioelectroactivity on the denitrification behavior of air-cathode microbial fuel cells.
    Zhao W; Gao Y; Zhao Y; Deng X; Shao J; Chen S
    Biotechnol Bioeng; 2022 Jan; 119(1):268-276. PubMed ID: 34698369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F
    Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocathodic performance of bioelectrochemical systems operated at low temperature.
    Zhang G; Su F; Jiao Y; Chen Q; Lee DJ
    Bioresour Technol; 2020 Aug; 310():123463. PubMed ID: 32387978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.