These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28578287)

  • 1. Sulfur doped-copper oxide nanoclusters synthesized through a facile electroplating process assisted by thiourea for selective photoelectrocatalytic reduction of CO
    Navaee A; Salimi A
    J Colloid Interface Sci; 2017 Nov; 505():241-252. PubMed ID: 28578287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Photoelectrocatalytic Reduction of CO
    Pan Z; Han E; Zheng J; Lu J; Wang X; Yin Y; Waterhouse GIN; Wang X; Li P
    Nanomicro Lett; 2020 Jan; 12(1):18. PubMed ID: 34138070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic CO
    Gong L; Chen JJ; Mu Y
    Phys Chem Chem Phys; 2017 Oct; 19(41):28344-28353. PubMed ID: 29034943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice-Hydride Mechanism in Electrocatalytic CO
    Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE
    J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of sulfur-doped TiO(2)/Ti photoelectrodes and their photoelectrocatalytic performance.
    Sun H; Liu H; Ma J; Wang X; Wang B; Han L
    J Hazard Mater; 2008 Aug; 156(1-3):552-9. PubMed ID: 18258358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO
    Hou H; Xu S; Ding S; Lin W; Yu Q; Zhang J; Qian G
    Sci Total Environ; 2022 Sep; 838(Pt 2):156032. PubMed ID: 35597356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency synergistic conversion of CO2 to methanol using Fe2O3 nanotubes modified with double-layer Cu2O spheres.
    Li P; Jing H; Xu J; Wu C; Peng H; Lu J; Lu F
    Nanoscale; 2014 Oct; 6(19):11380-6. PubMed ID: 25144767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Lu Y; Cao H; Xu S; Feng W; Hou G; Tang Y; Zhang H; Zheng G
    J Colloid Interface Sci; 2021 Oct; 599():497-506. PubMed ID: 33964695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B.
    Vomáčka P; Štengl V; Henych J; Kormunda M
    J Colloid Interface Sci; 2016 Nov; 481():28-38. PubMed ID: 27450889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol.
    Periasamy AP; Ravindranath R; Senthil Kumar SM; Wu WP; Jian TR; Chang HT
    Nanoscale; 2018 Jul; 10(25):11869-11880. PubMed ID: 29897084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand removal of Au
    Chen S; Li M; Yu S; Louisia S; Chuang W; Gao M; Chen C; Jin J; Salmeron MB; Yang P
    J Chem Phys; 2021 Aug; 155(5):051101. PubMed ID: 34364344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2.
    Kim D; Lee S; Ocon JD; Jeong B; Lee JK; Lee J
    Phys Chem Chem Phys; 2015 Jan; 17(2):824-30. PubMed ID: 25297636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template free synthesis of CuO nanocomposite for catalytic hydrogenation of CO
    Onthath H; Sliem MH; Geetha M; Kumar Sadasivuni K; Abdullah AM; Kumar B
    J Environ Manage; 2023 Oct; 344():118592. PubMed ID: 37451105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting CO
    Li S; Nagarajan AV; Alfonso DR; Sun M; Kauffman DR; Mpourmpakis G; Jin R
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6351-6356. PubMed ID: 33350026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrocatalytic reduction of CO
    Lian Z; Pan D; Wang W; Zhang D; Li G; Li H
    J Environ Sci (China); 2017 Oct; 60():108-113. PubMed ID: 29031439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Role of Copper Oxide in Electrochemical CO
    Mandal L; Yang KR; Motapothula MR; Ren D; Lobaccaro P; Patra A; Sherburne M; Batista VS; Yeo BS; Ager JW; Martin J; Venkatesan T
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8574-8584. PubMed ID: 29437377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical CO
    Rivera de la Cruz JG; Fontecave M
    Phys Chem Chem Phys; 2022 Jul; 24(26):15767-15775. PubMed ID: 35758310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.