BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28578420)

  • 1. A decadal analysis of bioeroding sponge cover on the inshore Great Barrier Reef.
    Ramsby BD; Hoogenboom MO; Whalan S; Webster NS; Thompson A
    Sci Rep; 2017 Jun; 7(1):2706. PubMed ID: 28578420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming.
    Ramsby BD; Hoogenboom MO; Smith HA; Whalan S; Webster NS
    Sci Rep; 2018 May; 8(1):8302. PubMed ID: 29844349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs.
    Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS
    Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute drivers influence recent inshore Great Barrier Reef dynamics.
    Lam VYY; Chaloupka M; Thompson A; Doropoulos C; Mumby PJ
    Proc Biol Sci; 2018 Nov; 285(1890):. PubMed ID: 30404884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioeroding sponge species from the Wakatobi region of southeast Sulawesi, Indonesia.
    Marlow J; Bell JJ; Shaffer M; Haris A; Schnberg CHL
    Zootaxa; 2021 Jul; 4996(1):1-48. PubMed ID: 34810546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge.
    Ramsby BD; Hoogenboom MO; Whalan S; Webster NS
    Mol Ecol; 2018 Apr; 27(8):2124-2137. PubMed ID: 29473977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroalgal cover on coral reefs: Spatial and environmental predictors, and decadal trends in the Great Barrier Reef.
    Fabricius KE; Crossman K; Jonker M; Mongin M; Thompson A
    PLoS One; 2023; 18(1):e0279699. PubMed ID: 36662876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomics reveals altered species interaction between the bioeroding sponge Cliona varians and the coral Porites furcata under ocean acidification.
    DeBiasse MB; Stubler AD; Kelly MW
    Mol Ecol; 2022 May; 31(10):3002-3017. PubMed ID: 35303383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India.
    Mote S; Gupta V; De K; Nanajkar M; Damare SR; Ingole B
    Folia Microbiol (Praha); 2021 Apr; 66(2):203-211. PubMed ID: 33140282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios.
    Fang JKH; Schönberg CHL; Mello-Athayde MA; Achlatis M; Hoegh-Guldberg O; Dove S
    Oecologia; 2018 May; 187(1):25-35. PubMed ID: 29574578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation.
    González-Rivero M; Bozec YM; Chollett I; Ferrari R; Schönberg CH; Mumby PJ
    Oecologia; 2016 May; 181(1):161-73. PubMed ID: 26753672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sponge biomass and bioerosion rates increase under ocean warming and acidification.
    Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S
    Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge.
    Achlatis M; van der Zande RM; Schönberg CHL; Fang JKH; Hoegh-Guldberg O; Dove S
    Sci Rep; 2017 Sep; 7(1):10705. PubMed ID: 28878236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacclimation to light-limitation in a clionaid sponge; implications for understanding sponge bioerosion on turbid reefs.
    Marlow J; Davy SK; Haris A; Bell JJ
    Mar Pollut Bull; 2018 Oct; 135():466-474. PubMed ID: 30301060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios.
    Campana S; Demey C; Busch K; Hentschel U; Muyzer G; de Goeij JM
    FEMS Microbiol Ecol; 2021 Aug; 97(9):. PubMed ID: 34351429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef.
    De'ath G; Fabricius K
    Ecol Appl; 2010 Apr; 20(3):840-50. PubMed ID: 20437968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats.
    Doropoulos C; Ward S; Roff G; González-Rivero M; Mumby PJ
    PLoS One; 2015; 10(5):e0128535. PubMed ID: 26009892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: implications for future changes in environmental quality.
    Powell A; Smith DJ; Hepburn LJ; Jones T; Berman J; Jompa J; Bell JJ
    PLoS One; 2014; 9(1):e85253. PubMed ID: 24475041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of architectural complexity on coral reefs under climate change.
    Bozec YM; Alvarez-Filip L; Mumby PJ
    Glob Chang Biol; 2015 Jan; 21(1):223-35. PubMed ID: 25099220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up and top-down controls on coral reef sponges: disentangling within-habitat and between-habitat processes.
    Wulff J
    Ecology; 2017 Apr; 98(4):1130-1139. PubMed ID: 28130801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.