These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28578850)

  • 61. Characterization and analysis of the composition and dynamics of the mammalian riboproteome.
    Reschke M; Clohessy JG; Seitzer N; Goldstein DP; Breitkopf SB; Schmolze DB; Ala U; Asara JM; Beck AH; Pandolfi PP
    Cell Rep; 2013 Sep; 4(6):1276-87. PubMed ID: 24055062
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Quantitative Proteome Map of the Human Body.
    Jiang L; Wang M; Lin S; Jian R; Li X; Chan J; Dong G; Fang H; Robinson AE; ; Snyder MP
    Cell; 2020 Oct; 183(1):269-283.e19. PubMed ID: 32916130
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Systematic quantitative analysis of ribosome inventory during nutrient stress.
    An H; Ordureau A; Körner M; Paulo JA; Harper JW
    Nature; 2020 Jul; 583(7815):303-309. PubMed ID: 32612236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes.
    Lauria F; Tebaldi T; Lunelli L; Struffi P; Gatto P; Pugliese A; Brigotti M; Montanaro L; Ciribilli Y; Inga A; Quattrone A; Sanguinetti G; Viero G
    Nucleic Acids Res; 2015 Dec; 43(22):e153. PubMed ID: 26240374
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Predicting proteome dynamics using gene expression data.
    Kuchta K; Towpik J; Biernacka A; Kutner J; Kudlicki A; Ginalski K; Rowicka M
    Sci Rep; 2018 Sep; 8(1):13866. PubMed ID: 30217992
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proteomic Techniques to Examine Neuronal Translational Dynamics.
    Koren SA; Gillett DA; D'Alton SV; Hamm MJ; Abisambra JF
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31323794
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism.
    Ho JJD; Balukoff NC; Theodoridis PR; Wang M; Krieger JR; Schatz JH; Lee S
    Nat Commun; 2020 May; 11(1):2677. PubMed ID: 32472050
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Translation control: bridging the gap between genomics and proteomics?
    Pradet-Balade B; Boulmé F; Beug H; Müllner EW; Garcia-Sanz JA
    Trends Biochem Sci; 2001 Apr; 26(4):225-9. PubMed ID: 11295554
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gene-specific correlation of RNA and protein levels in human cells and tissues.
    Edfors F; Danielsson F; Hallström BM; Käll L; Lundberg E; Pontén F; Forsström B; Uhlén M
    Mol Syst Biol; 2016 Oct; 12(10):883. PubMed ID: 27951527
    [TBL] [Abstract][Full Text] [Related]  

  • 70. PUNCH-P for global translatome profiling: Methodology, insights and comparison to other techniques.
    Aviner R; Geiger T; Elroy-Stein O
    Translation (Austin); 2013; 1(2):e27516. PubMed ID: 26824027
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Translational control mechanisms in angiogenesis and vascular biology.
    Yao P; Eswarappa SM; Fox PL
    Curr Atheroscler Rep; 2015 May; 17(5):506. PubMed ID: 25786748
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Label-Free Proteome Profiling as a Quantitative Target Identification Technique for Bioactive Small Molecules.
    Hong KT; Lee JS
    Biochemistry; 2020 Jan; 59(3):213-215. PubMed ID: 31746590
    [No Abstract]   [Full Text] [Related]  

  • 73. Protein synthesis rate is the predominant regulator of protein expression during differentiation.
    Kristensen AR; Gsponer J; Foster LJ
    Mol Syst Biol; 2013; 9():689. PubMed ID: 24045637
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds.
    Dele-Oni DO; Christianson KE; Egri SB; Vaca Jacome AS; DeRuff KC; Mullahoo J; Sharma V; Davison D; Ko T; Bula M; Blanchard J; Young JZ; Litichevskiy L; Lu X; Lam D; Asiedu JK; Toder C; Officer A; Peckner R; MacCoss MJ; Tsai LH; Carr SA; Papanastasiou M; Jaffe JD
    Sci Data; 2021 Aug; 8(1):226. PubMed ID: 34433823
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proteome-wide mapping of short-lived proteins in human cells.
    Li J; Cai Z; Vaites LP; Shen N; Mitchell DC; Huttlin EL; Paulo JA; Harry BL; Gygi SP
    Mol Cell; 2021 Nov; 81(22):4722-4735.e5. PubMed ID: 34626566
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Calculating Sample Size Requirements for Temporal Dynamics in Single-Cell Proteomics.
    Boekweg H; Guise AJ; Plowey ED; Kelly RT; Payne SH
    Mol Cell Proteomics; 2021; 20():100085. PubMed ID: 33915259
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Strategies for measuring dynamics: the temporal component of proteomics.
    Beynon RJ; Pratt JM
    Methods Biochem Anal; 2006; 49():15-25. PubMed ID: 16929670
    [No Abstract]   [Full Text] [Related]  

  • 78. Nucleic-acid sequencing of proteomes.
    Koch L
    Nat Rev Genet; 2021 Jan; 22(1):2. PubMed ID: 33097913
    [No Abstract]   [Full Text] [Related]  

  • 79. Profiling a human: the role of antibodies.
    Lake F
    Biotechniques; 2020 Jun; 68(6):293-295. PubMed ID: 32418437
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Keeping the Proportions of Protein Complex Components in Check.
    Taggart JC; Zauber H; Selbach M; Li GW; McShane E
    Cell Syst; 2020 Feb; 10(2):125-132. PubMed ID: 32105631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.