These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Ho JJD; Balukoff NC; Theodoridis PR; Wang M; Krieger JR; Schatz JH; Lee S Nat Commun; 2020 May; 11(1):2677. PubMed ID: 32472050 [TBL] [Abstract][Full Text] [Related]
68. Translation control: bridging the gap between genomics and proteomics? Pradet-Balade B; Boulmé F; Beug H; Müllner EW; Garcia-Sanz JA Trends Biochem Sci; 2001 Apr; 26(4):225-9. PubMed ID: 11295554 [TBL] [Abstract][Full Text] [Related]
69. Gene-specific correlation of RNA and protein levels in human cells and tissues. Edfors F; Danielsson F; Hallström BM; Käll L; Lundberg E; Pontén F; Forsström B; Uhlén M Mol Syst Biol; 2016 Oct; 12(10):883. PubMed ID: 27951527 [TBL] [Abstract][Full Text] [Related]
70. PUNCH-P for global translatome profiling: Methodology, insights and comparison to other techniques. Aviner R; Geiger T; Elroy-Stein O Translation (Austin); 2013; 1(2):e27516. PubMed ID: 26824027 [TBL] [Abstract][Full Text] [Related]
71. Translational control mechanisms in angiogenesis and vascular biology. Yao P; Eswarappa SM; Fox PL Curr Atheroscler Rep; 2015 May; 17(5):506. PubMed ID: 25786748 [TBL] [Abstract][Full Text] [Related]
72. Label-Free Proteome Profiling as a Quantitative Target Identification Technique for Bioactive Small Molecules. Hong KT; Lee JS Biochemistry; 2020 Jan; 59(3):213-215. PubMed ID: 31746590 [No Abstract] [Full Text] [Related]
73. Protein synthesis rate is the predominant regulator of protein expression during differentiation. Kristensen AR; Gsponer J; Foster LJ Mol Syst Biol; 2013; 9():689. PubMed ID: 24045637 [TBL] [Abstract][Full Text] [Related]
74. Proteomic profiling dataset of chemical perturbations in multiple biological backgrounds. Dele-Oni DO; Christianson KE; Egri SB; Vaca Jacome AS; DeRuff KC; Mullahoo J; Sharma V; Davison D; Ko T; Bula M; Blanchard J; Young JZ; Litichevskiy L; Lu X; Lam D; Asiedu JK; Toder C; Officer A; Peckner R; MacCoss MJ; Tsai LH; Carr SA; Papanastasiou M; Jaffe JD Sci Data; 2021 Aug; 8(1):226. PubMed ID: 34433823 [TBL] [Abstract][Full Text] [Related]
75. Proteome-wide mapping of short-lived proteins in human cells. Li J; Cai Z; Vaites LP; Shen N; Mitchell DC; Huttlin EL; Paulo JA; Harry BL; Gygi SP Mol Cell; 2021 Nov; 81(22):4722-4735.e5. PubMed ID: 34626566 [TBL] [Abstract][Full Text] [Related]
76. Calculating Sample Size Requirements for Temporal Dynamics in Single-Cell Proteomics. Boekweg H; Guise AJ; Plowey ED; Kelly RT; Payne SH Mol Cell Proteomics; 2021; 20():100085. PubMed ID: 33915259 [TBL] [Abstract][Full Text] [Related]
77. Strategies for measuring dynamics: the temporal component of proteomics. Beynon RJ; Pratt JM Methods Biochem Anal; 2006; 49():15-25. PubMed ID: 16929670 [No Abstract] [Full Text] [Related]
79. Profiling a human: the role of antibodies. Lake F Biotechniques; 2020 Jun; 68(6):293-295. PubMed ID: 32418437 [TBL] [Abstract][Full Text] [Related]
80. Keeping the Proportions of Protein Complex Components in Check. Taggart JC; Zauber H; Selbach M; Li GW; McShane E Cell Syst; 2020 Feb; 10(2):125-132. PubMed ID: 32105631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]