These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28578910)
21. Specific signals generated by the cytoplasmic domain of the granulocyte colony-stimulating factor (G-CSF) receptor are not required for G-CSF-dependent granulocytic differentiation. Jacob J; Haug JS; Raptis S; Link DC Blood; 1998 Jul; 92(2):353-61. PubMed ID: 9657731 [TBL] [Abstract][Full Text] [Related]
22. Granulocyte colony-stimulating factor receptor: stimulating granulopoiesis and much more. Liongue C; Wright C; Russell AP; Ward AC Int J Biochem Cell Biol; 2009 Dec; 41(12):2372-5. PubMed ID: 19699815 [TBL] [Abstract][Full Text] [Related]
23. Novel variant isoform of G-CSF receptor involved in induction of proliferation of FDCP-2 cells: relevance to the pathogenesis of myelodysplastic syndrome. Awaya N; Uchida H; Miyakawa Y; Kinjo K; Matsushita H; Nakajima H; Ikeda Y; Kizaki M J Cell Physiol; 2002 Jun; 191(3):327-35. PubMed ID: 12012328 [TBL] [Abstract][Full Text] [Related]
24. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Hunter MG; Avalos BR Blood; 2000 Mar; 95(6):2132-7. PubMed ID: 10706885 [TBL] [Abstract][Full Text] [Related]
26. Human papillomavirus E6-induced degradation of E6TP1 is mediated by E6AP ubiquitin ligase. Gao Q; Kumar A; Singh L; Huibregtse JM; Beaudenon S; Srinivasan S; Wazer DE; Band H; Band V Cancer Res; 2002 Jun; 62(11):3315-21. PubMed ID: 12036950 [TBL] [Abstract][Full Text] [Related]
27. Increased granulocyte colony-stimulating factor responsiveness but normal resting granulopoiesis in mice carrying a targeted granulocyte colony-stimulating factor receptor mutation derived from a patient with severe congenital neutropenia. McLemore ML; Poursine-Laurent J; Link DC J Clin Invest; 1998 Aug; 102(3):483-92. PubMed ID: 9691084 [TBL] [Abstract][Full Text] [Related]
29. Proteolytic cleavage of granulocyte colony-stimulating factor and its receptor by neutrophil elastase induces growth inhibition and decreased cell surface expression of the granulocyte colony-stimulating factor receptor. Hunter MG; Druhan LJ; Massullo PR; Avalos BR Am J Hematol; 2003 Nov; 74(3):149-55. PubMed ID: 14587040 [TBL] [Abstract][Full Text] [Related]
30. E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Zheng L; Ding H; Lu Z; Li Y; Pan Y; Ning T; Ke Y Genes Cells; 2008 Mar; 13(3):285-94. PubMed ID: 18298802 [TBL] [Abstract][Full Text] [Related]
31. The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. Marteijn JA; van Emst L; Erpelinck-Verschueren CA; Nikoloski G; Menke A; de Witte T; Löwenberg B; Jansen JH; van der Reijden BA Blood; 2005 Dec; 106(13):4114-23. PubMed ID: 16118314 [TBL] [Abstract][Full Text] [Related]
32. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Druhan LJ; Ai J; Massullo P; Kindwall-Keller T; Ranalli MA; Avalos BR Blood; 2005 Jan; 105(2):584-91. PubMed ID: 15353486 [TBL] [Abstract][Full Text] [Related]
33. G-CSF and GM-CSF concentrations and receptor expression in peripheral blood leukemic cells from patients with chronic myelogenous leukemia. Lee J; Kim Y; Lim J; Kim M; Han K Ann Clin Lab Sci; 2008; 38(4):331-7. PubMed ID: 18988925 [TBL] [Abstract][Full Text] [Related]
34. c-Abl phosphorylates E6AP and regulates its E3 ubiquitin ligase activity. Chan AL; Grossman T; Zuckerman V; Campigli Di Giammartino D; Moshel O; Scheffner M; Monahan B; Pilling P; Jiang YH; Haupt S; Schueler-Furman O; Haupt Y Biochemistry; 2013 May; 52(18):3119-29. PubMed ID: 23581475 [TBL] [Abstract][Full Text] [Related]
36. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Liu J; Dong S; Li L; Wang H; Zhao J; Zhao Y Cell Signal; 2019 Jun; 58():91-98. PubMed ID: 30849519 [TBL] [Abstract][Full Text] [Related]
37. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Nie XH; Ou-yang J; Xing Y; Li DY; Dong XY; Liu RE; Xu RX Drug Des Devel Ther; 2015; 9():5611-22. PubMed ID: 26508835 [TBL] [Abstract][Full Text] [Related]
38. Involvement of a cellular ubiquitin-protein ligase E6AP in the ubiquitin-mediated degradation of extensive substrates of high-risk human papillomavirus E6. Matsumoto Y; Nakagawa S; Yano T; Takizawa S; Nagasaka K; Nakagawa K; Minaguchi T; Wada O; Ooishi H; Matsumoto K; Yasugi T; Kanda T; Huibregtse JM; Taketani Y J Med Virol; 2006 Apr; 78(4):501-7. PubMed ID: 16482544 [TBL] [Abstract][Full Text] [Related]
39. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Xie P; Tang Y; Shen S; Wang Y; Xing G; Yin Y; He F; Zhang L Biochem Biophys Res Commun; 2011 Apr; 407(1):254-9. PubMed ID: 21382345 [TBL] [Abstract][Full Text] [Related]
40. Defective G-CSFR signaling pathways in congenital neutropenia. Skokowa J; Welte K Hematol Oncol Clin North Am; 2013 Feb; 27(1):75-88, viii. PubMed ID: 23351989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]